In-depth mining of clinical data: the construction of clinical prediction model with R

This article is the series of methodology of clinical prediction model construction (total 16 sections of this methodology series). The first section mainly introduces the concept, current application status, construction methods and processes, classification of clinical prediction models, and the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of translational medicine 2019-12, Vol.7 (23), p.796-796
Hauptverfasser: Zhou, Zhi-Rui, Wang, Wei-Wei, Li, Yan, Jin, Kai-Rui, Wang, Xuan-Yi, Wang, Zi-Wei, Chen, Yi-Shan, Wang, Shao-Jia, Hu, Jing, Zhang, Hui-Na, Huang, Po, Zhao, Guo-Zhen, Chen, Xing-Xing, Li, Bo, Zhang, Tian-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue 23
container_start_page 796
container_title Annals of translational medicine
container_volume 7
creator Zhou, Zhi-Rui
Wang, Wei-Wei
Li, Yan
Jin, Kai-Rui
Wang, Xuan-Yi
Wang, Zi-Wei
Chen, Yi-Shan
Wang, Shao-Jia
Hu, Jing
Zhang, Hui-Na
Huang, Po
Zhao, Guo-Zhen
Chen, Xing-Xing
Li, Bo
Zhang, Tian-Song
description This article is the series of methodology of clinical prediction model construction (total 16 sections of this methodology series). The first section mainly introduces the concept, current application status, construction methods and processes, classification of clinical prediction models, and the necessary conditions for conducting such researches and the problems currently faced. The second episode of these series mainly concentrates on the screening method in multivariate regression analysis. The third section mainly introduces the construction method of prediction models based on Logistic regression and Nomogram drawing. The fourth episode mainly concentrates on Cox proportional hazards regression model and Nomogram drawing. The fifth Section of the series mainly introduces the calculation method of C-Statistics in the logistic regression model. The sixth section mainly introduces two common calculation methods for C-Index in Cox regression based on R. The seventh section focuses on the principle and calculation methods of Net Reclassification Index (NRI) using R. The eighth section focuses on the principle and calculation methods of IDI (Integrated Discrimination Index) using R. The ninth section continues to explore the evaluation method of clinical utility after predictive model construction: Decision Curve Analysis. The tenth section is a supplement to the previous section and mainly introduces the Decision Curve Analysis of survival outcome data. The eleventh section mainly discusses the external validation method of Logistic regression model. The twelfth mainly discusses the in-depth evaluation of Cox regression model based on R, including calculating the concordance index of discrimination (C-index) in the validation data set and drawing the calibration curve. The thirteenth section mainly introduces how to deal with the survival data outcome using competitive risk model with R. The fourteenth section mainly introduces how to draw the nomogram of the competitive risk model with R. The fifteenth section of the series mainly discusses the identification of outliers and the interpolation of missing values. The sixteenth section of the series mainly introduced the advanced variable selection methods in linear model, such as Ridge regression and LASSO regression.
doi_str_mv 10.21037/atm.2019.08.63
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6989986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353590355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-1802b13a22bf17499c4eda8c91800cc598099b32f6c2d0d1b6649151852722093</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaJYqT17kz162XYyabaJB0GKH4WCIOo1ZLPZNrK7qZtU8d-72lra0zzmvXkzzCPkgsIQKbDJSMd6iEDlEMQwY0fkDBnwlAsmj_dwjwxCeAcAilQygFPSYwhjFBTPyNusSQu7isukdo1rFokvE1N10OgqKXTU10lc2sT4JsR2baLzzYFk1drCbdq1L2yVfLnO6_mcnJS6CnawrX3yen_3Mn1M508Ps-ntPDUMWUypAMwp04h5SSdjKc3YFloY2RFgDJcCpMwZlpnBAgqaZ9lYUk4FxwkiSNYnNxvf1TqvbWFsE1tdqVXrat1-K6-dOmQat1QL_6kyKaQUWWdwtTVo_cfahqhqF4ytKt1Yvw4KGWdcAuO8k442UtP6EFpb7tZQUH-BqC4Q9RuIAqEy1k1c7l-30_-_n_0A58eGhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353590355</pqid></control><display><type>article</type><title>In-depth mining of clinical data: the construction of clinical prediction model with R</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhou, Zhi-Rui ; Wang, Wei-Wei ; Li, Yan ; Jin, Kai-Rui ; Wang, Xuan-Yi ; Wang, Zi-Wei ; Chen, Yi-Shan ; Wang, Shao-Jia ; Hu, Jing ; Zhang, Hui-Na ; Huang, Po ; Zhao, Guo-Zhen ; Chen, Xing-Xing ; Li, Bo ; Zhang, Tian-Song</creator><creatorcontrib>Zhou, Zhi-Rui ; Wang, Wei-Wei ; Li, Yan ; Jin, Kai-Rui ; Wang, Xuan-Yi ; Wang, Zi-Wei ; Chen, Yi-Shan ; Wang, Shao-Jia ; Hu, Jing ; Zhang, Hui-Na ; Huang, Po ; Zhao, Guo-Zhen ; Chen, Xing-Xing ; Li, Bo ; Zhang, Tian-Song</creatorcontrib><description>This article is the series of methodology of clinical prediction model construction (total 16 sections of this methodology series). The first section mainly introduces the concept, current application status, construction methods and processes, classification of clinical prediction models, and the necessary conditions for conducting such researches and the problems currently faced. The second episode of these series mainly concentrates on the screening method in multivariate regression analysis. The third section mainly introduces the construction method of prediction models based on Logistic regression and Nomogram drawing. The fourth episode mainly concentrates on Cox proportional hazards regression model and Nomogram drawing. The fifth Section of the series mainly introduces the calculation method of C-Statistics in the logistic regression model. The sixth section mainly introduces two common calculation methods for C-Index in Cox regression based on R. The seventh section focuses on the principle and calculation methods of Net Reclassification Index (NRI) using R. The eighth section focuses on the principle and calculation methods of IDI (Integrated Discrimination Index) using R. The ninth section continues to explore the evaluation method of clinical utility after predictive model construction: Decision Curve Analysis. The tenth section is a supplement to the previous section and mainly introduces the Decision Curve Analysis of survival outcome data. The eleventh section mainly discusses the external validation method of Logistic regression model. The twelfth mainly discusses the in-depth evaluation of Cox regression model based on R, including calculating the concordance index of discrimination (C-index) in the validation data set and drawing the calibration curve. The thirteenth section mainly introduces how to deal with the survival data outcome using competitive risk model with R. The fourteenth section mainly introduces how to draw the nomogram of the competitive risk model with R. The fifteenth section of the series mainly discusses the identification of outliers and the interpolation of missing values. The sixteenth section of the series mainly introduced the advanced variable selection methods in linear model, such as Ridge regression and LASSO regression.</description><identifier>ISSN: 2305-5839</identifier><identifier>EISSN: 2305-5839</identifier><identifier>DOI: 10.21037/atm.2019.08.63</identifier><identifier>PMID: 32042812</identifier><language>eng</language><publisher>China: AME Publishing Company</publisher><subject>Special Report</subject><ispartof>Annals of translational medicine, 2019-12, Vol.7 (23), p.796-796</ispartof><rights>2019 Annals of Translational Medicine. All rights reserved.</rights><rights>2019 Annals of Translational Medicine. All rights reserved. 2019 Annals of Translational Medicine.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-1802b13a22bf17499c4eda8c91800cc598099b32f6c2d0d1b6649151852722093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989986/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989986/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32042812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhi-Rui</creatorcontrib><creatorcontrib>Wang, Wei-Wei</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Jin, Kai-Rui</creatorcontrib><creatorcontrib>Wang, Xuan-Yi</creatorcontrib><creatorcontrib>Wang, Zi-Wei</creatorcontrib><creatorcontrib>Chen, Yi-Shan</creatorcontrib><creatorcontrib>Wang, Shao-Jia</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Zhang, Hui-Na</creatorcontrib><creatorcontrib>Huang, Po</creatorcontrib><creatorcontrib>Zhao, Guo-Zhen</creatorcontrib><creatorcontrib>Chen, Xing-Xing</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Tian-Song</creatorcontrib><title>In-depth mining of clinical data: the construction of clinical prediction model with R</title><title>Annals of translational medicine</title><addtitle>Ann Transl Med</addtitle><description>This article is the series of methodology of clinical prediction model construction (total 16 sections of this methodology series). The first section mainly introduces the concept, current application status, construction methods and processes, classification of clinical prediction models, and the necessary conditions for conducting such researches and the problems currently faced. The second episode of these series mainly concentrates on the screening method in multivariate regression analysis. The third section mainly introduces the construction method of prediction models based on Logistic regression and Nomogram drawing. The fourth episode mainly concentrates on Cox proportional hazards regression model and Nomogram drawing. The fifth Section of the series mainly introduces the calculation method of C-Statistics in the logistic regression model. The sixth section mainly introduces two common calculation methods for C-Index in Cox regression based on R. The seventh section focuses on the principle and calculation methods of Net Reclassification Index (NRI) using R. The eighth section focuses on the principle and calculation methods of IDI (Integrated Discrimination Index) using R. The ninth section continues to explore the evaluation method of clinical utility after predictive model construction: Decision Curve Analysis. The tenth section is a supplement to the previous section and mainly introduces the Decision Curve Analysis of survival outcome data. The eleventh section mainly discusses the external validation method of Logistic regression model. The twelfth mainly discusses the in-depth evaluation of Cox regression model based on R, including calculating the concordance index of discrimination (C-index) in the validation data set and drawing the calibration curve. The thirteenth section mainly introduces how to deal with the survival data outcome using competitive risk model with R. The fourteenth section mainly introduces how to draw the nomogram of the competitive risk model with R. The fifteenth section of the series mainly discusses the identification of outliers and the interpolation of missing values. The sixteenth section of the series mainly introduced the advanced variable selection methods in linear model, such as Ridge regression and LASSO regression.</description><subject>Special Report</subject><issn>2305-5839</issn><issn>2305-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEQDaJYqT17kz162XYyabaJB0GKH4WCIOo1ZLPZNrK7qZtU8d-72lra0zzmvXkzzCPkgsIQKbDJSMd6iEDlEMQwY0fkDBnwlAsmj_dwjwxCeAcAilQygFPSYwhjFBTPyNusSQu7isukdo1rFokvE1N10OgqKXTU10lc2sT4JsR2baLzzYFk1drCbdq1L2yVfLnO6_mcnJS6CnawrX3yen_3Mn1M508Ps-ntPDUMWUypAMwp04h5SSdjKc3YFloY2RFgDJcCpMwZlpnBAgqaZ9lYUk4FxwkiSNYnNxvf1TqvbWFsE1tdqVXrat1-K6-dOmQat1QL_6kyKaQUWWdwtTVo_cfahqhqF4ytKt1Yvw4KGWdcAuO8k442UtP6EFpb7tZQUH-BqC4Q9RuIAqEy1k1c7l-30_-_n_0A58eGhA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Zhou, Zhi-Rui</creator><creator>Wang, Wei-Wei</creator><creator>Li, Yan</creator><creator>Jin, Kai-Rui</creator><creator>Wang, Xuan-Yi</creator><creator>Wang, Zi-Wei</creator><creator>Chen, Yi-Shan</creator><creator>Wang, Shao-Jia</creator><creator>Hu, Jing</creator><creator>Zhang, Hui-Na</creator><creator>Huang, Po</creator><creator>Zhao, Guo-Zhen</creator><creator>Chen, Xing-Xing</creator><creator>Li, Bo</creator><creator>Zhang, Tian-Song</creator><general>AME Publishing Company</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201912</creationdate><title>In-depth mining of clinical data: the construction of clinical prediction model with R</title><author>Zhou, Zhi-Rui ; Wang, Wei-Wei ; Li, Yan ; Jin, Kai-Rui ; Wang, Xuan-Yi ; Wang, Zi-Wei ; Chen, Yi-Shan ; Wang, Shao-Jia ; Hu, Jing ; Zhang, Hui-Na ; Huang, Po ; Zhao, Guo-Zhen ; Chen, Xing-Xing ; Li, Bo ; Zhang, Tian-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-1802b13a22bf17499c4eda8c91800cc598099b32f6c2d0d1b6649151852722093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Special Report</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhi-Rui</creatorcontrib><creatorcontrib>Wang, Wei-Wei</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Jin, Kai-Rui</creatorcontrib><creatorcontrib>Wang, Xuan-Yi</creatorcontrib><creatorcontrib>Wang, Zi-Wei</creatorcontrib><creatorcontrib>Chen, Yi-Shan</creatorcontrib><creatorcontrib>Wang, Shao-Jia</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Zhang, Hui-Na</creatorcontrib><creatorcontrib>Huang, Po</creatorcontrib><creatorcontrib>Zhao, Guo-Zhen</creatorcontrib><creatorcontrib>Chen, Xing-Xing</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Tian-Song</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhi-Rui</au><au>Wang, Wei-Wei</au><au>Li, Yan</au><au>Jin, Kai-Rui</au><au>Wang, Xuan-Yi</au><au>Wang, Zi-Wei</au><au>Chen, Yi-Shan</au><au>Wang, Shao-Jia</au><au>Hu, Jing</au><au>Zhang, Hui-Na</au><au>Huang, Po</au><au>Zhao, Guo-Zhen</au><au>Chen, Xing-Xing</au><au>Li, Bo</au><au>Zhang, Tian-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-depth mining of clinical data: the construction of clinical prediction model with R</atitle><jtitle>Annals of translational medicine</jtitle><addtitle>Ann Transl Med</addtitle><date>2019-12</date><risdate>2019</risdate><volume>7</volume><issue>23</issue><spage>796</spage><epage>796</epage><pages>796-796</pages><issn>2305-5839</issn><eissn>2305-5839</eissn><abstract>This article is the series of methodology of clinical prediction model construction (total 16 sections of this methodology series). The first section mainly introduces the concept, current application status, construction methods and processes, classification of clinical prediction models, and the necessary conditions for conducting such researches and the problems currently faced. The second episode of these series mainly concentrates on the screening method in multivariate regression analysis. The third section mainly introduces the construction method of prediction models based on Logistic regression and Nomogram drawing. The fourth episode mainly concentrates on Cox proportional hazards regression model and Nomogram drawing. The fifth Section of the series mainly introduces the calculation method of C-Statistics in the logistic regression model. The sixth section mainly introduces two common calculation methods for C-Index in Cox regression based on R. The seventh section focuses on the principle and calculation methods of Net Reclassification Index (NRI) using R. The eighth section focuses on the principle and calculation methods of IDI (Integrated Discrimination Index) using R. The ninth section continues to explore the evaluation method of clinical utility after predictive model construction: Decision Curve Analysis. The tenth section is a supplement to the previous section and mainly introduces the Decision Curve Analysis of survival outcome data. The eleventh section mainly discusses the external validation method of Logistic regression model. The twelfth mainly discusses the in-depth evaluation of Cox regression model based on R, including calculating the concordance index of discrimination (C-index) in the validation data set and drawing the calibration curve. The thirteenth section mainly introduces how to deal with the survival data outcome using competitive risk model with R. The fourteenth section mainly introduces how to draw the nomogram of the competitive risk model with R. The fifteenth section of the series mainly discusses the identification of outliers and the interpolation of missing values. The sixteenth section of the series mainly introduced the advanced variable selection methods in linear model, such as Ridge regression and LASSO regression.</abstract><cop>China</cop><pub>AME Publishing Company</pub><pmid>32042812</pmid><doi>10.21037/atm.2019.08.63</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2305-5839
ispartof Annals of translational medicine, 2019-12, Vol.7 (23), p.796-796
issn 2305-5839
2305-5839
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6989986
source EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Special Report
title In-depth mining of clinical data: the construction of clinical prediction model with R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-depth%20mining%20of%20clinical%20data:%20the%20construction%20of%20clinical%20prediction%20model%20with%20R&rft.jtitle=Annals%20of%20translational%20medicine&rft.au=Zhou,%20Zhi-Rui&rft.date=2019-12&rft.volume=7&rft.issue=23&rft.spage=796&rft.epage=796&rft.pages=796-796&rft.issn=2305-5839&rft.eissn=2305-5839&rft_id=info:doi/10.21037/atm.2019.08.63&rft_dat=%3Cproquest_pubme%3E2353590355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353590355&rft_id=info:pmid/32042812&rfr_iscdi=true