Genome‐wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis
Summary Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the two most prevalent viruses infecting orchids and causing economic losses worldwide. Mixed infection of CymMV and ORSV could induce intensified symptoms as early at 10 days post‐inoculation in inoculated Phalaenops...
Gespeichert in:
Veröffentlicht in: | Molecular plant pathology 2020-02, Vol.21 (2), p.188-205 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 2 |
container_start_page | 188 |
container_title | Molecular plant pathology |
container_volume | 21 |
creator | Pai, Hsuan Jean, Wen‐Han Lee, Yun‐Shien Chang, Yao‐Chien Alex Lin, Na‐Sheng |
description | Summary
Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the two most prevalent viruses infecting orchids and causing economic losses worldwide. Mixed infection of CymMV and ORSV could induce intensified symptoms as early at 10 days post‐inoculation in inoculated Phalaenopsis amabilis, where CymMV pathogenesis was unilaterally enhanced by ORSV. To reveal the antiviral RNA silencing activity in orchids, we characterized the viral small‐interfering RNAs (vsiRNAs) from CymMV and ORSV singly or synergistically infecting P. amabilis. We also temporally classified the inoculated leaf‐tip tissues and noninoculated adjacent tissues as late and early stages of infection, respectively. Regardless of early or late stage with single or double infection, CymMV and ORSV vsiRNAs were predominant in 21‐ and 22‐nt sizes, with excess positive polarity and under‐represented 5ʹ‐guanine. While CymMV vsiRNAs mainly derived from RNA‐dependent RNA polymerase‐coding regions, ORSV vsiRNAs encompassed the coat protein gene and 3ʹ‐untranslated region, with a specific hotspot residing in the 3ʹ‐terminal pseudoknot. With double infection, CymMV vsiRNAs increased more than 5‐fold in number with increasing virus titres. Most vsiRNA features remained unchanged with double inoculation, but additional ORSV vsiRNA hotspot peaks were prominent. The potential vsiRNA‐mediated regulation of the novel targets in double‐infected tissues thereby provides a different view of CymMV and ORSV synergism. Hence, temporally profiled vsiRNAs from taxonomically distinct CymMV and ORSV illustrate active antiviral RNA silencing in their natural host, Phalaenopsis, during both early and late stages of infection. Our findings provide insights into offence–defence interactions among CymMV, ORSV and orchids. |
doi_str_mv | 10.1111/mpp.12888 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A732108400</galeid><sourcerecordid>A732108400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5108-1f89f0ca444fa36faaac38b48c647aad3d79e812e1daa27b071a27cbfa1df87c3</originalsourceid><addsrcrecordid>eNp1Uk1v1DAQjRCIfsCBP4AsceKwWzt2184FabWCglToCsHZmjh26iqOg520yo1jj_xGfgkDuxQqgX2Ykee9NzOeKYpnjC4ZnpMwDEtWKqUeFIeMr8SCS8ofoi_QX8myPCiOcr6ilMmqPH1cHHAmS6FodVjcntk-Bvv967cb31gCPXRz9plER3KAriMfP6wzcSkGctHEfoxtF3OeAkm-b_MQR3Lt05SR2JDNHGrfeAyGmMGbfSjPvU2tz6M3KDgT3ztrRqST7SV0gPkHzPikeOSgy_bp3h4Xn9-8_rR5uzi_OHu3WZ8vzCmjasGcqhw1IIRwwFcOAAxXtVBmJSRAwxtZWcVKyxqAUtZUMjSmdsAap6Thx8Wrne4w1cE2xvZjgk4PyQdIs47g9f1I7y91G6_1qlJKcIYCL_YCKX6ZbB71VZwS_lvWJReylEKo6g-qhc5qbDmimAk-G72WvMRWBKWIWv4DhbexwZvYW-fx_R7h5Y5gEo4hWXdXOKP65y5o3AX9axcQ-_zvTu-Qv4ePgJMd4AazzP9X0u-3253kD5TZwxI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347274489</pqid></control><display><type>article</type><title>Genome‐wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Pai, Hsuan ; Jean, Wen‐Han ; Lee, Yun‐Shien ; Chang, Yao‐Chien Alex ; Lin, Na‐Sheng</creator><creatorcontrib>Pai, Hsuan ; Jean, Wen‐Han ; Lee, Yun‐Shien ; Chang, Yao‐Chien Alex ; Lin, Na‐Sheng</creatorcontrib><description>Summary
Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the two most prevalent viruses infecting orchids and causing economic losses worldwide. Mixed infection of CymMV and ORSV could induce intensified symptoms as early at 10 days post‐inoculation in inoculated Phalaenopsis amabilis, where CymMV pathogenesis was unilaterally enhanced by ORSV. To reveal the antiviral RNA silencing activity in orchids, we characterized the viral small‐interfering RNAs (vsiRNAs) from CymMV and ORSV singly or synergistically infecting P. amabilis. We also temporally classified the inoculated leaf‐tip tissues and noninoculated adjacent tissues as late and early stages of infection, respectively. Regardless of early or late stage with single or double infection, CymMV and ORSV vsiRNAs were predominant in 21‐ and 22‐nt sizes, with excess positive polarity and under‐represented 5ʹ‐guanine. While CymMV vsiRNAs mainly derived from RNA‐dependent RNA polymerase‐coding regions, ORSV vsiRNAs encompassed the coat protein gene and 3ʹ‐untranslated region, with a specific hotspot residing in the 3ʹ‐terminal pseudoknot. With double infection, CymMV vsiRNAs increased more than 5‐fold in number with increasing virus titres. Most vsiRNA features remained unchanged with double inoculation, but additional ORSV vsiRNA hotspot peaks were prominent. The potential vsiRNA‐mediated regulation of the novel targets in double‐infected tissues thereby provides a different view of CymMV and ORSV synergism. Hence, temporally profiled vsiRNAs from taxonomically distinct CymMV and ORSV illustrate active antiviral RNA silencing in their natural host, Phalaenopsis, during both early and late stages of infection. Our findings provide insights into offence–defence interactions among CymMV, ORSV and orchids.</description><identifier>ISSN: 1464-6722</identifier><identifier>EISSN: 1364-3703</identifier><identifier>DOI: 10.1111/mpp.12888</identifier><identifier>PMID: 31724809</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Analysis ; Antiviral agents ; anti‐viral RNA silencing ; Coat protein ; Cymbidium ; Cymbidium mosaic virus ; Disease hot spots ; DNA-directed RNA polymerase ; Economic impact ; Flowers & plants ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Guanine ; Health aspects ; Infection ; Infections ; Inoculation ; Medical research ; Medicine, Experimental ; Mixed infection ; Odontoglossum ringspot virus ; Orchidaceae - virology ; Original ; Pathogenesis ; Phalaenopsis ; Polarity ; Potexvirus - pathogenicity ; Proteins ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA, Small Interfering - metabolism ; RNA-mediated interference ; small RNA sequencing ; Synergism ; Tissues ; Tobamovirus - pathogenicity ; Transfer RNA ; Viral infections ; viral siRNA (vsiRNA) ; Viruses</subject><ispartof>Molecular plant pathology, 2020-02, Vol.21 (2), p.188-205</ispartof><rights>2019 The Authors. published by British Society for Plant Pathology and John Wiley & Sons Ltd</rights><rights>2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5108-1f89f0ca444fa36faaac38b48c647aad3d79e812e1daa27b071a27cbfa1df87c3</citedby><cites>FETCH-LOGICAL-c5108-1f89f0ca444fa36faaac38b48c647aad3d79e812e1daa27b071a27cbfa1df87c3</cites><orcidid>0000-0003-1148-6256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988431/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988431/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31724809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pai, Hsuan</creatorcontrib><creatorcontrib>Jean, Wen‐Han</creatorcontrib><creatorcontrib>Lee, Yun‐Shien</creatorcontrib><creatorcontrib>Chang, Yao‐Chien Alex</creatorcontrib><creatorcontrib>Lin, Na‐Sheng</creatorcontrib><title>Genome‐wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis</title><title>Molecular plant pathology</title><addtitle>Mol Plant Pathol</addtitle><description>Summary
Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the two most prevalent viruses infecting orchids and causing economic losses worldwide. Mixed infection of CymMV and ORSV could induce intensified symptoms as early at 10 days post‐inoculation in inoculated Phalaenopsis amabilis, where CymMV pathogenesis was unilaterally enhanced by ORSV. To reveal the antiviral RNA silencing activity in orchids, we characterized the viral small‐interfering RNAs (vsiRNAs) from CymMV and ORSV singly or synergistically infecting P. amabilis. We also temporally classified the inoculated leaf‐tip tissues and noninoculated adjacent tissues as late and early stages of infection, respectively. Regardless of early or late stage with single or double infection, CymMV and ORSV vsiRNAs were predominant in 21‐ and 22‐nt sizes, with excess positive polarity and under‐represented 5ʹ‐guanine. While CymMV vsiRNAs mainly derived from RNA‐dependent RNA polymerase‐coding regions, ORSV vsiRNAs encompassed the coat protein gene and 3ʹ‐untranslated region, with a specific hotspot residing in the 3ʹ‐terminal pseudoknot. With double infection, CymMV vsiRNAs increased more than 5‐fold in number with increasing virus titres. Most vsiRNA features remained unchanged with double inoculation, but additional ORSV vsiRNA hotspot peaks were prominent. The potential vsiRNA‐mediated regulation of the novel targets in double‐infected tissues thereby provides a different view of CymMV and ORSV synergism. Hence, temporally profiled vsiRNAs from taxonomically distinct CymMV and ORSV illustrate active antiviral RNA silencing in their natural host, Phalaenopsis, during both early and late stages of infection. Our findings provide insights into offence–defence interactions among CymMV, ORSV and orchids.</description><subject>Analysis</subject><subject>Antiviral agents</subject><subject>anti‐viral RNA silencing</subject><subject>Coat protein</subject><subject>Cymbidium</subject><subject>Cymbidium mosaic virus</subject><subject>Disease hot spots</subject><subject>DNA-directed RNA polymerase</subject><subject>Economic impact</subject><subject>Flowers & plants</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Guanine</subject><subject>Health aspects</subject><subject>Infection</subject><subject>Infections</subject><subject>Inoculation</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Mixed infection</subject><subject>Odontoglossum ringspot virus</subject><subject>Orchidaceae - virology</subject><subject>Original</subject><subject>Pathogenesis</subject><subject>Phalaenopsis</subject><subject>Polarity</subject><subject>Potexvirus - pathogenicity</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA-mediated interference</subject><subject>small RNA sequencing</subject><subject>Synergism</subject><subject>Tissues</subject><subject>Tobamovirus - pathogenicity</subject><subject>Transfer RNA</subject><subject>Viral infections</subject><subject>viral siRNA (vsiRNA)</subject><subject>Viruses</subject><issn>1464-6722</issn><issn>1364-3703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1Uk1v1DAQjRCIfsCBP4AsceKwWzt2184FabWCglToCsHZmjh26iqOg520yo1jj_xGfgkDuxQqgX2Ykee9NzOeKYpnjC4ZnpMwDEtWKqUeFIeMr8SCS8ofoi_QX8myPCiOcr6ilMmqPH1cHHAmS6FodVjcntk-Bvv967cb31gCPXRz9plER3KAriMfP6wzcSkGctHEfoxtF3OeAkm-b_MQR3Lt05SR2JDNHGrfeAyGmMGbfSjPvU2tz6M3KDgT3ztrRqST7SV0gPkHzPikeOSgy_bp3h4Xn9-8_rR5uzi_OHu3WZ8vzCmjasGcqhw1IIRwwFcOAAxXtVBmJSRAwxtZWcVKyxqAUtZUMjSmdsAap6Thx8Wrne4w1cE2xvZjgk4PyQdIs47g9f1I7y91G6_1qlJKcIYCL_YCKX6ZbB71VZwS_lvWJReylEKo6g-qhc5qbDmimAk-G72WvMRWBKWIWv4DhbexwZvYW-fx_R7h5Y5gEo4hWXdXOKP65y5o3AX9axcQ-_zvTu-Qv4ePgJMd4AazzP9X0u-3253kD5TZwxI</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Pai, Hsuan</creator><creator>Jean, Wen‐Han</creator><creator>Lee, Yun‐Shien</creator><creator>Chang, Yao‐Chien Alex</creator><creator>Lin, Na‐Sheng</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1148-6256</orcidid></search><sort><creationdate>202002</creationdate><title>Genome‐wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis</title><author>Pai, Hsuan ; Jean, Wen‐Han ; Lee, Yun‐Shien ; Chang, Yao‐Chien Alex ; Lin, Na‐Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5108-1f89f0ca444fa36faaac38b48c647aad3d79e812e1daa27b071a27cbfa1df87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Antiviral agents</topic><topic>anti‐viral RNA silencing</topic><topic>Coat protein</topic><topic>Cymbidium</topic><topic>Cymbidium mosaic virus</topic><topic>Disease hot spots</topic><topic>DNA-directed RNA polymerase</topic><topic>Economic impact</topic><topic>Flowers & plants</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Guanine</topic><topic>Health aspects</topic><topic>Infection</topic><topic>Infections</topic><topic>Inoculation</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Mixed infection</topic><topic>Odontoglossum ringspot virus</topic><topic>Orchidaceae - virology</topic><topic>Original</topic><topic>Pathogenesis</topic><topic>Phalaenopsis</topic><topic>Polarity</topic><topic>Potexvirus - pathogenicity</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA-mediated interference</topic><topic>small RNA sequencing</topic><topic>Synergism</topic><topic>Tissues</topic><topic>Tobamovirus - pathogenicity</topic><topic>Transfer RNA</topic><topic>Viral infections</topic><topic>viral siRNA (vsiRNA)</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pai, Hsuan</creatorcontrib><creatorcontrib>Jean, Wen‐Han</creatorcontrib><creatorcontrib>Lee, Yun‐Shien</creatorcontrib><creatorcontrib>Chang, Yao‐Chien Alex</creatorcontrib><creatorcontrib>Lin, Na‐Sheng</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, Hsuan</au><au>Jean, Wen‐Han</au><au>Lee, Yun‐Shien</au><au>Chang, Yao‐Chien Alex</au><au>Lin, Na‐Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome‐wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis</atitle><jtitle>Molecular plant pathology</jtitle><addtitle>Mol Plant Pathol</addtitle><date>2020-02</date><risdate>2020</risdate><volume>21</volume><issue>2</issue><spage>188</spage><epage>205</epage><pages>188-205</pages><issn>1464-6722</issn><eissn>1364-3703</eissn><abstract>Summary
Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the two most prevalent viruses infecting orchids and causing economic losses worldwide. Mixed infection of CymMV and ORSV could induce intensified symptoms as early at 10 days post‐inoculation in inoculated Phalaenopsis amabilis, where CymMV pathogenesis was unilaterally enhanced by ORSV. To reveal the antiviral RNA silencing activity in orchids, we characterized the viral small‐interfering RNAs (vsiRNAs) from CymMV and ORSV singly or synergistically infecting P. amabilis. We also temporally classified the inoculated leaf‐tip tissues and noninoculated adjacent tissues as late and early stages of infection, respectively. Regardless of early or late stage with single or double infection, CymMV and ORSV vsiRNAs were predominant in 21‐ and 22‐nt sizes, with excess positive polarity and under‐represented 5ʹ‐guanine. While CymMV vsiRNAs mainly derived from RNA‐dependent RNA polymerase‐coding regions, ORSV vsiRNAs encompassed the coat protein gene and 3ʹ‐untranslated region, with a specific hotspot residing in the 3ʹ‐terminal pseudoknot. With double infection, CymMV vsiRNAs increased more than 5‐fold in number with increasing virus titres. Most vsiRNA features remained unchanged with double inoculation, but additional ORSV vsiRNA hotspot peaks were prominent. The potential vsiRNA‐mediated regulation of the novel targets in double‐infected tissues thereby provides a different view of CymMV and ORSV synergism. Hence, temporally profiled vsiRNAs from taxonomically distinct CymMV and ORSV illustrate active antiviral RNA silencing in their natural host, Phalaenopsis, during both early and late stages of infection. Our findings provide insights into offence–defence interactions among CymMV, ORSV and orchids.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>31724809</pmid><doi>10.1111/mpp.12888</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1148-6256</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-6722 |
ispartof | Molecular plant pathology, 2020-02, Vol.21 (2), p.188-205 |
issn | 1464-6722 1364-3703 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988431 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central |
subjects | Analysis Antiviral agents anti‐viral RNA silencing Coat protein Cymbidium Cymbidium mosaic virus Disease hot spots DNA-directed RNA polymerase Economic impact Flowers & plants Genome-Wide Association Study - methods Genomes Genomics Guanine Health aspects Infection Infections Inoculation Medical research Medicine, Experimental Mixed infection Odontoglossum ringspot virus Orchidaceae - virology Original Pathogenesis Phalaenopsis Polarity Potexvirus - pathogenicity Proteins Ribonucleic acid RNA RNA polymerase RNA, Small Interfering - metabolism RNA-mediated interference small RNA sequencing Synergism Tissues Tobamovirus - pathogenicity Transfer RNA Viral infections viral siRNA (vsiRNA) Viruses |
title | Genome‐wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%E2%80%90wide%20analysis%20of%20small%20RNAs%20from%20Odontoglossum%20ringspot%20virus%20and%20Cymbidium%20mosaic%20virus%20synergistically%20infecting%20Phalaenopsis&rft.jtitle=Molecular%20plant%20pathology&rft.au=Pai,%20Hsuan&rft.date=2020-02&rft.volume=21&rft.issue=2&rft.spage=188&rft.epage=205&rft.pages=188-205&rft.issn=1464-6722&rft.eissn=1364-3703&rft_id=info:doi/10.1111/mpp.12888&rft_dat=%3Cgale_pubme%3EA732108400%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347274489&rft_id=info:pmid/31724809&rft_galeid=A732108400&rfr_iscdi=true |