Tracing the origin of adult intestinal stem cells
Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1 , 2 and fuel the constant replenishment of the intestinal epithelium 1 . Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells 3 , 4 , it remains uncle...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2019-06, Vol.570 (7759), p.107-111 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 7759 |
container_start_page | 107 |
container_title | Nature (London) |
container_volume | 570 |
creator | Guiu, Jordi Hannezo, Edouard Yui, Shiro Demharter, Samuel Ulyanchenko, Svetlana Maimets, Martti Jørgensen, Anne Perlman, Signe Lundvall, Lene Mamsen, Linn Salto Larsen, Agnete Olesen, Rasmus H. Andersen, Claus Yding Thuesen, Lea Langhoff Hare, Kristine Juul Pers, Tune H. Khodosevich, Konstantin Simons, Benjamin D. Jensen, Kim B. |
description | Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5
1
,
2
and fuel the constant replenishment of the intestinal epithelium
1
. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells
3
,
4
, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage
5
–
9
, revealing that stem-cell identity is an induced rather than a hardwired property.
Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment. |
doi_str_mv | 10.1038/s41586-019-1212-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6986928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A602150277</galeid><sourcerecordid>A602150277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c739t-a43c49c97f417ff17f7e149a0d5e68c8ffc57378361cf38e146527dab6445faf3</originalsourceid><addsrcrecordid>eNp1kl1rHSEQhqU0NKdpf0BvytLetBemfuveFELoRyAQaNNrMa5uDLt6orul-fdxOWmSE04QEZxnXmfGF4B3GB1iRNWXwjBXAiLcQkwwgfwFWGEmBWRCyZdghRBRECkq9sHrUq4QQhxL9grsU4xa0hK8Avg8Gxti30yXrkk59CE2yTemm4epCXFyZQrRDE2Z3NhYNwzlDdjzZiju7d15AP58_3Z-_BOenv04OT46hVbSdoKGUcta20rPsPS-bukwaw3quBPKKu8tl1TW4rD1VNWY4ER25kIwxr3x9AB83eiu54vRddbFKZtBr3MYTb7RyQS9HYnhUvfprxatEi1RVeDTnUBO13NtRI-hLC2Y6NJcNCGUIMIVwxX9-AS9SnOufS9UrYdThfgD1ZvB6RB9qu_aRVQfCUQwR0TKSsEdVO-iq0Wm6Hyo11v8hx28XYdr_Rg63AHV1bkx2J2qn7cSKjO5f1Nv5lL0ye9f2yzesDanUrLz90PGSC9G0xuj6Wo0vRhNL7N4__h37jP-O6sCZAOUGoq9yw8jfV71Fg412Nc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244553805</pqid></control><display><type>article</type><title>Tracing the origin of adult intestinal stem cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Guiu, Jordi ; Hannezo, Edouard ; Yui, Shiro ; Demharter, Samuel ; Ulyanchenko, Svetlana ; Maimets, Martti ; Jørgensen, Anne ; Perlman, Signe ; Lundvall, Lene ; Mamsen, Linn Salto ; Larsen, Agnete ; Olesen, Rasmus H. ; Andersen, Claus Yding ; Thuesen, Lea Langhoff ; Hare, Kristine Juul ; Pers, Tune H. ; Khodosevich, Konstantin ; Simons, Benjamin D. ; Jensen, Kim B.</creator><creatorcontrib>Guiu, Jordi ; Hannezo, Edouard ; Yui, Shiro ; Demharter, Samuel ; Ulyanchenko, Svetlana ; Maimets, Martti ; Jørgensen, Anne ; Perlman, Signe ; Lundvall, Lene ; Mamsen, Linn Salto ; Larsen, Agnete ; Olesen, Rasmus H. ; Andersen, Claus Yding ; Thuesen, Lea Langhoff ; Hare, Kristine Juul ; Pers, Tune H. ; Khodosevich, Konstantin ; Simons, Benjamin D. ; Jensen, Kim B.</creatorcontrib><description>Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5
1
,
2
and fuel the constant replenishment of the intestinal epithelium
1
. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells
3
,
4
, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage
5
–
9
, revealing that stem-cell identity is an induced rather than a hardwired property.
Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1212-5</identifier><identifier>PMID: 31092921</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 14/19 ; 38/91 ; 631/532/2118 ; 631/532/2437 ; 64/60 ; Adults ; Animals ; Cell Differentiation ; Cell Lineage ; Cellular Reprogramming ; Cloning ; Crypts ; Embryos ; Epithelial cells ; Epithelium ; Female ; Fetus - cytology ; Fetuses ; Homeostasis ; Humanities and Social Sciences ; Intestinal Mucosa - cytology ; Intestinal Mucosa - metabolism ; Intestine ; Intestines ; Intestines - cytology ; Intestines - growth & development ; Letter ; Male ; Mice ; Microbiology ; multidisciplinary ; Origin ; Plastic foam ; Population ; Receptors, G-Protein-Coupled - metabolism ; Regeneration ; Replenishment ; Science ; Science (multidisciplinary) ; Small intestine ; Stem Cell Niche ; Stem cell transplantation ; Stem cells ; Stem Cells - cytology ; Transplantation ; Villus</subject><ispartof>Nature (London), 2019-06, Vol.570 (7759), p.107-111</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 6, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c739t-a43c49c97f417ff17f7e149a0d5e68c8ffc57378361cf38e146527dab6445faf3</citedby><cites>FETCH-LOGICAL-c739t-a43c49c97f417ff17f7e149a0d5e68c8ffc57378361cf38e146527dab6445faf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1212-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1212-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31092921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guiu, Jordi</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><creatorcontrib>Yui, Shiro</creatorcontrib><creatorcontrib>Demharter, Samuel</creatorcontrib><creatorcontrib>Ulyanchenko, Svetlana</creatorcontrib><creatorcontrib>Maimets, Martti</creatorcontrib><creatorcontrib>Jørgensen, Anne</creatorcontrib><creatorcontrib>Perlman, Signe</creatorcontrib><creatorcontrib>Lundvall, Lene</creatorcontrib><creatorcontrib>Mamsen, Linn Salto</creatorcontrib><creatorcontrib>Larsen, Agnete</creatorcontrib><creatorcontrib>Olesen, Rasmus H.</creatorcontrib><creatorcontrib>Andersen, Claus Yding</creatorcontrib><creatorcontrib>Thuesen, Lea Langhoff</creatorcontrib><creatorcontrib>Hare, Kristine Juul</creatorcontrib><creatorcontrib>Pers, Tune H.</creatorcontrib><creatorcontrib>Khodosevich, Konstantin</creatorcontrib><creatorcontrib>Simons, Benjamin D.</creatorcontrib><creatorcontrib>Jensen, Kim B.</creatorcontrib><title>Tracing the origin of adult intestinal stem cells</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5
1
,
2
and fuel the constant replenishment of the intestinal epithelium
1
. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells
3
,
4
, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage
5
–
9
, revealing that stem-cell identity is an induced rather than a hardwired property.
Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment.</description><subject>13/1</subject><subject>13/100</subject><subject>14/19</subject><subject>38/91</subject><subject>631/532/2118</subject><subject>631/532/2437</subject><subject>64/60</subject><subject>Adults</subject><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cellular Reprogramming</subject><subject>Cloning</subject><subject>Crypts</subject><subject>Embryos</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Female</subject><subject>Fetus - cytology</subject><subject>Fetuses</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>Intestines</subject><subject>Intestines - cytology</subject><subject>Intestines - growth & development</subject><subject>Letter</subject><subject>Male</subject><subject>Mice</subject><subject>Microbiology</subject><subject>multidisciplinary</subject><subject>Origin</subject><subject>Plastic foam</subject><subject>Population</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Regeneration</subject><subject>Replenishment</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Small intestine</subject><subject>Stem Cell Niche</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Transplantation</subject><subject>Villus</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kl1rHSEQhqU0NKdpf0BvytLetBemfuveFELoRyAQaNNrMa5uDLt6orul-fdxOWmSE04QEZxnXmfGF4B3GB1iRNWXwjBXAiLcQkwwgfwFWGEmBWRCyZdghRBRECkq9sHrUq4QQhxL9grsU4xa0hK8Avg8Gxti30yXrkk59CE2yTemm4epCXFyZQrRDE2Z3NhYNwzlDdjzZiju7d15AP58_3Z-_BOenv04OT46hVbSdoKGUcta20rPsPS-bukwaw3quBPKKu8tl1TW4rD1VNWY4ER25kIwxr3x9AB83eiu54vRddbFKZtBr3MYTb7RyQS9HYnhUvfprxatEi1RVeDTnUBO13NtRI-hLC2Y6NJcNCGUIMIVwxX9-AS9SnOufS9UrYdThfgD1ZvB6RB9qu_aRVQfCUQwR0TKSsEdVO-iq0Wm6Hyo11v8hx28XYdr_Rg63AHV1bkx2J2qn7cSKjO5f1Nv5lL0ye9f2yzesDanUrLz90PGSC9G0xuj6Wo0vRhNL7N4__h37jP-O6sCZAOUGoq9yw8jfV71Fg412Nc</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Guiu, Jordi</creator><creator>Hannezo, Edouard</creator><creator>Yui, Shiro</creator><creator>Demharter, Samuel</creator><creator>Ulyanchenko, Svetlana</creator><creator>Maimets, Martti</creator><creator>Jørgensen, Anne</creator><creator>Perlman, Signe</creator><creator>Lundvall, Lene</creator><creator>Mamsen, Linn Salto</creator><creator>Larsen, Agnete</creator><creator>Olesen, Rasmus H.</creator><creator>Andersen, Claus Yding</creator><creator>Thuesen, Lea Langhoff</creator><creator>Hare, Kristine Juul</creator><creator>Pers, Tune H.</creator><creator>Khodosevich, Konstantin</creator><creator>Simons, Benjamin D.</creator><creator>Jensen, Kim B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201906</creationdate><title>Tracing the origin of adult intestinal stem cells</title><author>Guiu, Jordi ; Hannezo, Edouard ; Yui, Shiro ; Demharter, Samuel ; Ulyanchenko, Svetlana ; Maimets, Martti ; Jørgensen, Anne ; Perlman, Signe ; Lundvall, Lene ; Mamsen, Linn Salto ; Larsen, Agnete ; Olesen, Rasmus H. ; Andersen, Claus Yding ; Thuesen, Lea Langhoff ; Hare, Kristine Juul ; Pers, Tune H. ; Khodosevich, Konstantin ; Simons, Benjamin D. ; Jensen, Kim B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c739t-a43c49c97f417ff17f7e149a0d5e68c8ffc57378361cf38e146527dab6445faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>13/100</topic><topic>14/19</topic><topic>38/91</topic><topic>631/532/2118</topic><topic>631/532/2437</topic><topic>64/60</topic><topic>Adults</topic><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cellular Reprogramming</topic><topic>Cloning</topic><topic>Crypts</topic><topic>Embryos</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Female</topic><topic>Fetus - cytology</topic><topic>Fetuses</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>Intestines</topic><topic>Intestines - cytology</topic><topic>Intestines - growth & development</topic><topic>Letter</topic><topic>Male</topic><topic>Mice</topic><topic>Microbiology</topic><topic>multidisciplinary</topic><topic>Origin</topic><topic>Plastic foam</topic><topic>Population</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Regeneration</topic><topic>Replenishment</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Small intestine</topic><topic>Stem Cell Niche</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Transplantation</topic><topic>Villus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guiu, Jordi</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><creatorcontrib>Yui, Shiro</creatorcontrib><creatorcontrib>Demharter, Samuel</creatorcontrib><creatorcontrib>Ulyanchenko, Svetlana</creatorcontrib><creatorcontrib>Maimets, Martti</creatorcontrib><creatorcontrib>Jørgensen, Anne</creatorcontrib><creatorcontrib>Perlman, Signe</creatorcontrib><creatorcontrib>Lundvall, Lene</creatorcontrib><creatorcontrib>Mamsen, Linn Salto</creatorcontrib><creatorcontrib>Larsen, Agnete</creatorcontrib><creatorcontrib>Olesen, Rasmus H.</creatorcontrib><creatorcontrib>Andersen, Claus Yding</creatorcontrib><creatorcontrib>Thuesen, Lea Langhoff</creatorcontrib><creatorcontrib>Hare, Kristine Juul</creatorcontrib><creatorcontrib>Pers, Tune H.</creatorcontrib><creatorcontrib>Khodosevich, Konstantin</creatorcontrib><creatorcontrib>Simons, Benjamin D.</creatorcontrib><creatorcontrib>Jensen, Kim B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guiu, Jordi</au><au>Hannezo, Edouard</au><au>Yui, Shiro</au><au>Demharter, Samuel</au><au>Ulyanchenko, Svetlana</au><au>Maimets, Martti</au><au>Jørgensen, Anne</au><au>Perlman, Signe</au><au>Lundvall, Lene</au><au>Mamsen, Linn Salto</au><au>Larsen, Agnete</au><au>Olesen, Rasmus H.</au><au>Andersen, Claus Yding</au><au>Thuesen, Lea Langhoff</au><au>Hare, Kristine Juul</au><au>Pers, Tune H.</au><au>Khodosevich, Konstantin</au><au>Simons, Benjamin D.</au><au>Jensen, Kim B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing the origin of adult intestinal stem cells</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-06</date><risdate>2019</risdate><volume>570</volume><issue>7759</issue><spage>107</spage><epage>111</epage><pages>107-111</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5
1
,
2
and fuel the constant replenishment of the intestinal epithelium
1
. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells
3
,
4
, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage
5
–
9
, revealing that stem-cell identity is an induced rather than a hardwired property.
Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31092921</pmid><doi>10.1038/s41586-019-1212-5</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-06, Vol.570 (7759), p.107-111 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6986928 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13/1 13/100 14/19 38/91 631/532/2118 631/532/2437 64/60 Adults Animals Cell Differentiation Cell Lineage Cellular Reprogramming Cloning Crypts Embryos Epithelial cells Epithelium Female Fetus - cytology Fetuses Homeostasis Humanities and Social Sciences Intestinal Mucosa - cytology Intestinal Mucosa - metabolism Intestine Intestines Intestines - cytology Intestines - growth & development Letter Male Mice Microbiology multidisciplinary Origin Plastic foam Population Receptors, G-Protein-Coupled - metabolism Regeneration Replenishment Science Science (multidisciplinary) Small intestine Stem Cell Niche Stem cell transplantation Stem cells Stem Cells - cytology Transplantation Villus |
title | Tracing the origin of adult intestinal stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20the%20origin%20of%20adult%20intestinal%20stem%20cells&rft.jtitle=Nature%20(London)&rft.au=Guiu,%20Jordi&rft.date=2019-06&rft.volume=570&rft.issue=7759&rft.spage=107&rft.epage=111&rft.pages=107-111&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1212-5&rft_dat=%3Cgale_pubme%3EA602150277%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244553805&rft_id=info:pmid/31092921&rft_galeid=A602150277&rfr_iscdi=true |