Tracing the origin of adult intestinal stem cells

Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1 , 2 and fuel the constant replenishment of the intestinal epithelium 1 . Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells 3 , 4 , it remains uncle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-06, Vol.570 (7759), p.107-111
Hauptverfasser: Guiu, Jordi, Hannezo, Edouard, Yui, Shiro, Demharter, Samuel, Ulyanchenko, Svetlana, Maimets, Martti, Jørgensen, Anne, Perlman, Signe, Lundvall, Lene, Mamsen, Linn Salto, Larsen, Agnete, Olesen, Rasmus H., Andersen, Claus Yding, Thuesen, Lea Langhoff, Hare, Kristine Juul, Pers, Tune H., Khodosevich, Konstantin, Simons, Benjamin D., Jensen, Kim B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue 7759
container_start_page 107
container_title Nature (London)
container_volume 570
creator Guiu, Jordi
Hannezo, Edouard
Yui, Shiro
Demharter, Samuel
Ulyanchenko, Svetlana
Maimets, Martti
Jørgensen, Anne
Perlman, Signe
Lundvall, Lene
Mamsen, Linn Salto
Larsen, Agnete
Olesen, Rasmus H.
Andersen, Claus Yding
Thuesen, Lea Langhoff
Hare, Kristine Juul
Pers, Tune H.
Khodosevich, Konstantin
Simons, Benjamin D.
Jensen, Kim B.
description Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1 , 2 and fuel the constant replenishment of the intestinal epithelium 1 . Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells 3 , 4 , it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage 5 – 9 , revealing that stem-cell identity is an induced rather than a hardwired property. Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment.
doi_str_mv 10.1038/s41586-019-1212-5
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6986928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A602150277</galeid><sourcerecordid>A602150277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c739t-a43c49c97f417ff17f7e149a0d5e68c8ffc57378361cf38e146527dab6445faf3</originalsourceid><addsrcrecordid>eNp1kl1rHSEQhqU0NKdpf0BvytLetBemfuveFELoRyAQaNNrMa5uDLt6orul-fdxOWmSE04QEZxnXmfGF4B3GB1iRNWXwjBXAiLcQkwwgfwFWGEmBWRCyZdghRBRECkq9sHrUq4QQhxL9grsU4xa0hK8Avg8Gxti30yXrkk59CE2yTemm4epCXFyZQrRDE2Z3NhYNwzlDdjzZiju7d15AP58_3Z-_BOenv04OT46hVbSdoKGUcta20rPsPS-bukwaw3quBPKKu8tl1TW4rD1VNWY4ER25kIwxr3x9AB83eiu54vRddbFKZtBr3MYTb7RyQS9HYnhUvfprxatEi1RVeDTnUBO13NtRI-hLC2Y6NJcNCGUIMIVwxX9-AS9SnOufS9UrYdThfgD1ZvB6RB9qu_aRVQfCUQwR0TKSsEdVO-iq0Wm6Hyo11v8hx28XYdr_Rg63AHV1bkx2J2qn7cSKjO5f1Nv5lL0ye9f2yzesDanUrLz90PGSC9G0xuj6Wo0vRhNL7N4__h37jP-O6sCZAOUGoq9yw8jfV71Fg412Nc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244553805</pqid></control><display><type>article</type><title>Tracing the origin of adult intestinal stem cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Guiu, Jordi ; Hannezo, Edouard ; Yui, Shiro ; Demharter, Samuel ; Ulyanchenko, Svetlana ; Maimets, Martti ; Jørgensen, Anne ; Perlman, Signe ; Lundvall, Lene ; Mamsen, Linn Salto ; Larsen, Agnete ; Olesen, Rasmus H. ; Andersen, Claus Yding ; Thuesen, Lea Langhoff ; Hare, Kristine Juul ; Pers, Tune H. ; Khodosevich, Konstantin ; Simons, Benjamin D. ; Jensen, Kim B.</creator><creatorcontrib>Guiu, Jordi ; Hannezo, Edouard ; Yui, Shiro ; Demharter, Samuel ; Ulyanchenko, Svetlana ; Maimets, Martti ; Jørgensen, Anne ; Perlman, Signe ; Lundvall, Lene ; Mamsen, Linn Salto ; Larsen, Agnete ; Olesen, Rasmus H. ; Andersen, Claus Yding ; Thuesen, Lea Langhoff ; Hare, Kristine Juul ; Pers, Tune H. ; Khodosevich, Konstantin ; Simons, Benjamin D. ; Jensen, Kim B.</creatorcontrib><description>Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1 , 2 and fuel the constant replenishment of the intestinal epithelium 1 . Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells 3 , 4 , it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage 5 – 9 , revealing that stem-cell identity is an induced rather than a hardwired property. Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1212-5</identifier><identifier>PMID: 31092921</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 14/19 ; 38/91 ; 631/532/2118 ; 631/532/2437 ; 64/60 ; Adults ; Animals ; Cell Differentiation ; Cell Lineage ; Cellular Reprogramming ; Cloning ; Crypts ; Embryos ; Epithelial cells ; Epithelium ; Female ; Fetus - cytology ; Fetuses ; Homeostasis ; Humanities and Social Sciences ; Intestinal Mucosa - cytology ; Intestinal Mucosa - metabolism ; Intestine ; Intestines ; Intestines - cytology ; Intestines - growth &amp; development ; Letter ; Male ; Mice ; Microbiology ; multidisciplinary ; Origin ; Plastic foam ; Population ; Receptors, G-Protein-Coupled - metabolism ; Regeneration ; Replenishment ; Science ; Science (multidisciplinary) ; Small intestine ; Stem Cell Niche ; Stem cell transplantation ; Stem cells ; Stem Cells - cytology ; Transplantation ; Villus</subject><ispartof>Nature (London), 2019-06, Vol.570 (7759), p.107-111</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 6, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c739t-a43c49c97f417ff17f7e149a0d5e68c8ffc57378361cf38e146527dab6445faf3</citedby><cites>FETCH-LOGICAL-c739t-a43c49c97f417ff17f7e149a0d5e68c8ffc57378361cf38e146527dab6445faf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1212-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1212-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31092921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guiu, Jordi</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><creatorcontrib>Yui, Shiro</creatorcontrib><creatorcontrib>Demharter, Samuel</creatorcontrib><creatorcontrib>Ulyanchenko, Svetlana</creatorcontrib><creatorcontrib>Maimets, Martti</creatorcontrib><creatorcontrib>Jørgensen, Anne</creatorcontrib><creatorcontrib>Perlman, Signe</creatorcontrib><creatorcontrib>Lundvall, Lene</creatorcontrib><creatorcontrib>Mamsen, Linn Salto</creatorcontrib><creatorcontrib>Larsen, Agnete</creatorcontrib><creatorcontrib>Olesen, Rasmus H.</creatorcontrib><creatorcontrib>Andersen, Claus Yding</creatorcontrib><creatorcontrib>Thuesen, Lea Langhoff</creatorcontrib><creatorcontrib>Hare, Kristine Juul</creatorcontrib><creatorcontrib>Pers, Tune H.</creatorcontrib><creatorcontrib>Khodosevich, Konstantin</creatorcontrib><creatorcontrib>Simons, Benjamin D.</creatorcontrib><creatorcontrib>Jensen, Kim B.</creatorcontrib><title>Tracing the origin of adult intestinal stem cells</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1 , 2 and fuel the constant replenishment of the intestinal epithelium 1 . Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells 3 , 4 , it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage 5 – 9 , revealing that stem-cell identity is an induced rather than a hardwired property. Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment.</description><subject>13/1</subject><subject>13/100</subject><subject>14/19</subject><subject>38/91</subject><subject>631/532/2118</subject><subject>631/532/2437</subject><subject>64/60</subject><subject>Adults</subject><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cellular Reprogramming</subject><subject>Cloning</subject><subject>Crypts</subject><subject>Embryos</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Female</subject><subject>Fetus - cytology</subject><subject>Fetuses</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>Intestines</subject><subject>Intestines - cytology</subject><subject>Intestines - growth &amp; development</subject><subject>Letter</subject><subject>Male</subject><subject>Mice</subject><subject>Microbiology</subject><subject>multidisciplinary</subject><subject>Origin</subject><subject>Plastic foam</subject><subject>Population</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Regeneration</subject><subject>Replenishment</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Small intestine</subject><subject>Stem Cell Niche</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Transplantation</subject><subject>Villus</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kl1rHSEQhqU0NKdpf0BvytLetBemfuveFELoRyAQaNNrMa5uDLt6orul-fdxOWmSE04QEZxnXmfGF4B3GB1iRNWXwjBXAiLcQkwwgfwFWGEmBWRCyZdghRBRECkq9sHrUq4QQhxL9grsU4xa0hK8Avg8Gxti30yXrkk59CE2yTemm4epCXFyZQrRDE2Z3NhYNwzlDdjzZiju7d15AP58_3Z-_BOenv04OT46hVbSdoKGUcta20rPsPS-bukwaw3quBPKKu8tl1TW4rD1VNWY4ER25kIwxr3x9AB83eiu54vRddbFKZtBr3MYTb7RyQS9HYnhUvfprxatEi1RVeDTnUBO13NtRI-hLC2Y6NJcNCGUIMIVwxX9-AS9SnOufS9UrYdThfgD1ZvB6RB9qu_aRVQfCUQwR0TKSsEdVO-iq0Wm6Hyo11v8hx28XYdr_Rg63AHV1bkx2J2qn7cSKjO5f1Nv5lL0ye9f2yzesDanUrLz90PGSC9G0xuj6Wo0vRhNL7N4__h37jP-O6sCZAOUGoq9yw8jfV71Fg412Nc</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Guiu, Jordi</creator><creator>Hannezo, Edouard</creator><creator>Yui, Shiro</creator><creator>Demharter, Samuel</creator><creator>Ulyanchenko, Svetlana</creator><creator>Maimets, Martti</creator><creator>Jørgensen, Anne</creator><creator>Perlman, Signe</creator><creator>Lundvall, Lene</creator><creator>Mamsen, Linn Salto</creator><creator>Larsen, Agnete</creator><creator>Olesen, Rasmus H.</creator><creator>Andersen, Claus Yding</creator><creator>Thuesen, Lea Langhoff</creator><creator>Hare, Kristine Juul</creator><creator>Pers, Tune H.</creator><creator>Khodosevich, Konstantin</creator><creator>Simons, Benjamin D.</creator><creator>Jensen, Kim B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201906</creationdate><title>Tracing the origin of adult intestinal stem cells</title><author>Guiu, Jordi ; Hannezo, Edouard ; Yui, Shiro ; Demharter, Samuel ; Ulyanchenko, Svetlana ; Maimets, Martti ; Jørgensen, Anne ; Perlman, Signe ; Lundvall, Lene ; Mamsen, Linn Salto ; Larsen, Agnete ; Olesen, Rasmus H. ; Andersen, Claus Yding ; Thuesen, Lea Langhoff ; Hare, Kristine Juul ; Pers, Tune H. ; Khodosevich, Konstantin ; Simons, Benjamin D. ; Jensen, Kim B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c739t-a43c49c97f417ff17f7e149a0d5e68c8ffc57378361cf38e146527dab6445faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>13/100</topic><topic>14/19</topic><topic>38/91</topic><topic>631/532/2118</topic><topic>631/532/2437</topic><topic>64/60</topic><topic>Adults</topic><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cellular Reprogramming</topic><topic>Cloning</topic><topic>Crypts</topic><topic>Embryos</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Female</topic><topic>Fetus - cytology</topic><topic>Fetuses</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>Intestines</topic><topic>Intestines - cytology</topic><topic>Intestines - growth &amp; development</topic><topic>Letter</topic><topic>Male</topic><topic>Mice</topic><topic>Microbiology</topic><topic>multidisciplinary</topic><topic>Origin</topic><topic>Plastic foam</topic><topic>Population</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Regeneration</topic><topic>Replenishment</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Small intestine</topic><topic>Stem Cell Niche</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Transplantation</topic><topic>Villus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guiu, Jordi</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><creatorcontrib>Yui, Shiro</creatorcontrib><creatorcontrib>Demharter, Samuel</creatorcontrib><creatorcontrib>Ulyanchenko, Svetlana</creatorcontrib><creatorcontrib>Maimets, Martti</creatorcontrib><creatorcontrib>Jørgensen, Anne</creatorcontrib><creatorcontrib>Perlman, Signe</creatorcontrib><creatorcontrib>Lundvall, Lene</creatorcontrib><creatorcontrib>Mamsen, Linn Salto</creatorcontrib><creatorcontrib>Larsen, Agnete</creatorcontrib><creatorcontrib>Olesen, Rasmus H.</creatorcontrib><creatorcontrib>Andersen, Claus Yding</creatorcontrib><creatorcontrib>Thuesen, Lea Langhoff</creatorcontrib><creatorcontrib>Hare, Kristine Juul</creatorcontrib><creatorcontrib>Pers, Tune H.</creatorcontrib><creatorcontrib>Khodosevich, Konstantin</creatorcontrib><creatorcontrib>Simons, Benjamin D.</creatorcontrib><creatorcontrib>Jensen, Kim B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guiu, Jordi</au><au>Hannezo, Edouard</au><au>Yui, Shiro</au><au>Demharter, Samuel</au><au>Ulyanchenko, Svetlana</au><au>Maimets, Martti</au><au>Jørgensen, Anne</au><au>Perlman, Signe</au><au>Lundvall, Lene</au><au>Mamsen, Linn Salto</au><au>Larsen, Agnete</au><au>Olesen, Rasmus H.</au><au>Andersen, Claus Yding</au><au>Thuesen, Lea Langhoff</au><au>Hare, Kristine Juul</au><au>Pers, Tune H.</au><au>Khodosevich, Konstantin</au><au>Simons, Benjamin D.</au><au>Jensen, Kim B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing the origin of adult intestinal stem cells</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-06</date><risdate>2019</risdate><volume>570</volume><issue>7759</issue><spage>107</spage><epage>111</epage><pages>107-111</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1 , 2 and fuel the constant replenishment of the intestinal epithelium 1 . Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells 3 , 4 , it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage 5 – 9 , revealing that stem-cell identity is an induced rather than a hardwired property. Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31092921</pmid><doi>10.1038/s41586-019-1212-5</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-06, Vol.570 (7759), p.107-111
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6986928
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13/1
13/100
14/19
38/91
631/532/2118
631/532/2437
64/60
Adults
Animals
Cell Differentiation
Cell Lineage
Cellular Reprogramming
Cloning
Crypts
Embryos
Epithelial cells
Epithelium
Female
Fetus - cytology
Fetuses
Homeostasis
Humanities and Social Sciences
Intestinal Mucosa - cytology
Intestinal Mucosa - metabolism
Intestine
Intestines
Intestines - cytology
Intestines - growth & development
Letter
Male
Mice
Microbiology
multidisciplinary
Origin
Plastic foam
Population
Receptors, G-Protein-Coupled - metabolism
Regeneration
Replenishment
Science
Science (multidisciplinary)
Small intestine
Stem Cell Niche
Stem cell transplantation
Stem cells
Stem Cells - cytology
Transplantation
Villus
title Tracing the origin of adult intestinal stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20the%20origin%20of%20adult%20intestinal%20stem%20cells&rft.jtitle=Nature%20(London)&rft.au=Guiu,%20Jordi&rft.date=2019-06&rft.volume=570&rft.issue=7759&rft.spage=107&rft.epage=111&rft.pages=107-111&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1212-5&rft_dat=%3Cgale_pubme%3EA602150277%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244553805&rft_id=info:pmid/31092921&rft_galeid=A602150277&rfr_iscdi=true