Causal Learning via Manifold Regularization
This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowl...
Gespeichert in:
Veröffentlicht in: | Journal of machine learning research 2019-01, Vol.20, p.127-127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | |
container_start_page | 127 |
container_title | Journal of machine learning research |
container_volume | 20 |
creator | Hill, Steven M Oates, Chris J Blythe, Duncan A Mukherjee, Sach |
description | This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6986916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348221839</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-1f0aec1d1579a77fb20dcb5cb377cf48d42539193b90c91af256c6d95949d8a63</originalsourceid><addsrcrecordid>eNpVkFtLxDAUhIMo7rr6F6SPghSapEl6XgRZvEFFEH0Op0laI9l0bdoF_fXeVtGnGZjhG5gdMqeC81wBq3a_PMvLkosZOUjpuSioEkzukxmnAAwknZPTJU4JQ1Y7HKKPXbbxmN1i9G0fbHbvuing4N9w9H08JHsthuSOtrogj5cXD8vrvL67ulme1_maSTnmtC3QGWqpUIBKtQ0rrGmEabhSpi0rWzLBgQJvoDBAsWVCGmlBQAm2QskX5Oybu56albPGxXHAoNeDX-Hwqnv0-n8S_ZPu-o2WUEmgn4CTLWDoXyaXRr3yybgQMLp-SprxsmKMVhw-qsd_t35Hfh7i77chY2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348221839</pqid></control><display><type>article</type><title>Causal Learning via Manifold Regularization</title><source>ACM Digital Library Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hill, Steven M ; Oates, Chris J ; Blythe, Duncan A ; Mukherjee, Sach</creator><creatorcontrib>Hill, Steven M ; Oates, Chris J ; Blythe, Duncan A ; Mukherjee, Sach</creatorcontrib><description>This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.</description><identifier>ISSN: 1532-4435</identifier><identifier>EISSN: 1533-7928</identifier><identifier>PMID: 31992961</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of machine learning research, 2019-01, Vol.20, p.127-127</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hill, Steven M</creatorcontrib><creatorcontrib>Oates, Chris J</creatorcontrib><creatorcontrib>Blythe, Duncan A</creatorcontrib><creatorcontrib>Mukherjee, Sach</creatorcontrib><title>Causal Learning via Manifold Regularization</title><title>Journal of machine learning research</title><addtitle>J Mach Learn Res</addtitle><description>This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.</description><issn>1532-4435</issn><issn>1533-7928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkFtLxDAUhIMo7rr6F6SPghSapEl6XgRZvEFFEH0Op0laI9l0bdoF_fXeVtGnGZjhG5gdMqeC81wBq3a_PMvLkosZOUjpuSioEkzukxmnAAwknZPTJU4JQ1Y7HKKPXbbxmN1i9G0fbHbvuing4N9w9H08JHsthuSOtrogj5cXD8vrvL67ulme1_maSTnmtC3QGWqpUIBKtQ0rrGmEabhSpi0rWzLBgQJvoDBAsWVCGmlBQAm2QskX5Oybu56albPGxXHAoNeDX-Hwqnv0-n8S_ZPu-o2WUEmgn4CTLWDoXyaXRr3yybgQMLp-SprxsmKMVhw-qsd_t35Hfh7i77chY2w</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hill, Steven M</creator><creator>Oates, Chris J</creator><creator>Blythe, Duncan A</creator><creator>Mukherjee, Sach</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Causal Learning via Manifold Regularization</title><author>Hill, Steven M ; Oates, Chris J ; Blythe, Duncan A ; Mukherjee, Sach</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-1f0aec1d1579a77fb20dcb5cb377cf48d42539193b90c91af256c6d95949d8a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hill, Steven M</creatorcontrib><creatorcontrib>Oates, Chris J</creatorcontrib><creatorcontrib>Blythe, Duncan A</creatorcontrib><creatorcontrib>Mukherjee, Sach</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of machine learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hill, Steven M</au><au>Oates, Chris J</au><au>Blythe, Duncan A</au><au>Mukherjee, Sach</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal Learning via Manifold Regularization</atitle><jtitle>Journal of machine learning research</jtitle><addtitle>J Mach Learn Res</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>20</volume><spage>127</spage><epage>127</epage><pages>127-127</pages><issn>1532-4435</issn><eissn>1533-7928</eissn><abstract>This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.</abstract><cop>United States</cop><pmid>31992961</pmid><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-4435 |
ispartof | Journal of machine learning research, 2019-01, Vol.20, p.127-127 |
issn | 1532-4435 1533-7928 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6986916 |
source | ACM Digital Library Complete; EZB-FREE-00999 freely available EZB journals |
title | Causal Learning via Manifold Regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20Learning%20via%20Manifold%20Regularization&rft.jtitle=Journal%20of%20machine%20learning%20research&rft.au=Hill,%20Steven%20M&rft.date=2019-01-01&rft.volume=20&rft.spage=127&rft.epage=127&rft.pages=127-127&rft.issn=1532-4435&rft.eissn=1533-7928&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2348221839%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348221839&rft_id=info:pmid/31992961&rfr_iscdi=true |