Causal Learning via Manifold Regularization

This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of machine learning research 2019-01, Vol.20, p.127-127
Hauptverfasser: Hill, Steven M, Oates, Chris J, Blythe, Duncan A, Mukherjee, Sach
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue
container_start_page 127
container_title Journal of machine learning research
container_volume 20
creator Hill, Steven M
Oates, Chris J
Blythe, Duncan A
Mukherjee, Sach
description This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6986916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348221839</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-1f0aec1d1579a77fb20dcb5cb377cf48d42539193b90c91af256c6d95949d8a63</originalsourceid><addsrcrecordid>eNpVkFtLxDAUhIMo7rr6F6SPghSapEl6XgRZvEFFEH0Op0laI9l0bdoF_fXeVtGnGZjhG5gdMqeC81wBq3a_PMvLkosZOUjpuSioEkzukxmnAAwknZPTJU4JQ1Y7HKKPXbbxmN1i9G0fbHbvuing4N9w9H08JHsthuSOtrogj5cXD8vrvL67ulme1_maSTnmtC3QGWqpUIBKtQ0rrGmEabhSpi0rWzLBgQJvoDBAsWVCGmlBQAm2QskX5Oybu56albPGxXHAoNeDX-Hwqnv0-n8S_ZPu-o2WUEmgn4CTLWDoXyaXRr3yybgQMLp-SprxsmKMVhw-qsd_t35Hfh7i77chY2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348221839</pqid></control><display><type>article</type><title>Causal Learning via Manifold Regularization</title><source>ACM Digital Library Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hill, Steven M ; Oates, Chris J ; Blythe, Duncan A ; Mukherjee, Sach</creator><creatorcontrib>Hill, Steven M ; Oates, Chris J ; Blythe, Duncan A ; Mukherjee, Sach</creatorcontrib><description>This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.</description><identifier>ISSN: 1532-4435</identifier><identifier>EISSN: 1533-7928</identifier><identifier>PMID: 31992961</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of machine learning research, 2019-01, Vol.20, p.127-127</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hill, Steven M</creatorcontrib><creatorcontrib>Oates, Chris J</creatorcontrib><creatorcontrib>Blythe, Duncan A</creatorcontrib><creatorcontrib>Mukherjee, Sach</creatorcontrib><title>Causal Learning via Manifold Regularization</title><title>Journal of machine learning research</title><addtitle>J Mach Learn Res</addtitle><description>This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.</description><issn>1532-4435</issn><issn>1533-7928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkFtLxDAUhIMo7rr6F6SPghSapEl6XgRZvEFFEH0Op0laI9l0bdoF_fXeVtGnGZjhG5gdMqeC81wBq3a_PMvLkosZOUjpuSioEkzukxmnAAwknZPTJU4JQ1Y7HKKPXbbxmN1i9G0fbHbvuing4N9w9H08JHsthuSOtrogj5cXD8vrvL67ulme1_maSTnmtC3QGWqpUIBKtQ0rrGmEabhSpi0rWzLBgQJvoDBAsWVCGmlBQAm2QskX5Oybu56albPGxXHAoNeDX-Hwqnv0-n8S_ZPu-o2WUEmgn4CTLWDoXyaXRr3yybgQMLp-SprxsmKMVhw-qsd_t35Hfh7i77chY2w</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hill, Steven M</creator><creator>Oates, Chris J</creator><creator>Blythe, Duncan A</creator><creator>Mukherjee, Sach</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Causal Learning via Manifold Regularization</title><author>Hill, Steven M ; Oates, Chris J ; Blythe, Duncan A ; Mukherjee, Sach</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-1f0aec1d1579a77fb20dcb5cb377cf48d42539193b90c91af256c6d95949d8a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hill, Steven M</creatorcontrib><creatorcontrib>Oates, Chris J</creatorcontrib><creatorcontrib>Blythe, Duncan A</creatorcontrib><creatorcontrib>Mukherjee, Sach</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of machine learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hill, Steven M</au><au>Oates, Chris J</au><au>Blythe, Duncan A</au><au>Mukherjee, Sach</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal Learning via Manifold Regularization</atitle><jtitle>Journal of machine learning research</jtitle><addtitle>J Mach Learn Res</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>20</volume><spage>127</spage><epage>127</epage><pages>127-127</pages><issn>1532-4435</issn><eissn>1533-7928</eissn><abstract>This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.</abstract><cop>United States</cop><pmid>31992961</pmid><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-4435
ispartof Journal of machine learning research, 2019-01, Vol.20, p.127-127
issn 1532-4435
1533-7928
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6986916
source ACM Digital Library Complete; EZB-FREE-00999 freely available EZB journals
title Causal Learning via Manifold Regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20Learning%20via%20Manifold%20Regularization&rft.jtitle=Journal%20of%20machine%20learning%20research&rft.au=Hill,%20Steven%20M&rft.date=2019-01-01&rft.volume=20&rft.spage=127&rft.epage=127&rft.pages=127-127&rft.issn=1532-4435&rft.eissn=1533-7928&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2348221839%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348221839&rft_id=info:pmid/31992961&rfr_iscdi=true