The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish
Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish c...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2020-02, Vol.40 (2), p.298-313 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 2 |
container_start_page | 298 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 40 |
creator | Chhabria, Karishma Plant, Karen Bandmann, Oliver Wilkinson, Robert N Martin, Chris Kugler, Elisabeth Armitage, Paul A Santoscoy, Paola LM Cunliffe, Vincent T Huisken, Jan McGown, Alexander Ramesh, Tennore Chico, Tim JA Howarth, Clare |
description | Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function. |
doi_str_mv | 10.1177/0271678X18810615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X18810615</sage_id><sourcerecordid>2130303680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-265274ec70fc1f773725a86981fe0b25fd18f116ffc75e311a9c682f59eb065d3</originalsourceid><addsrcrecordid>eNp1kc1rGzEQxUVJaJy0956KjrlsO7NbfeylUEKSBgK5JJCbkOWRvWEtbaXdgPPXR8auSQM9DcPvzZthHmNfEL4hKvUdaoVS6UfUGkGi-MBmKERbKUB5xGZbXG35CTvN-QkAdCPER3bSQNPq0syYvV8RJ-_JjTx6vtoMlJb9xtG6szwGHmhK8dlmN_U2cRenoe_Cktuw4I4Szd_AwY4jpbDFXeAvhVnf5dUnduxtn-nzvp6xh6vL-4vf1e3d9c3Fr9vKCYCxqqWo1Q9yCrxDr1SjamG1bDV6gnkt_AK1R5TeOyWoQbStk7r2oqU5SLFoztjPne8wzde0cBTGZHszpG5t08ZE25l_SehWZhmfTdkh2lYVg_O9QYp_JsqjWXfZUd_bQHHKpsbyNmikhiKFndSlmHMif1iDYLbJmPfJlJGvb887DPyNogiqnSDbJZmnOKVQ3vV_w1daM5j2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130303680</pqid></control><display><type>article</type><title>The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SAGE Complete A-Z List</source><source>PubMed Central</source><creator>Chhabria, Karishma ; Plant, Karen ; Bandmann, Oliver ; Wilkinson, Robert N ; Martin, Chris ; Kugler, Elisabeth ; Armitage, Paul A ; Santoscoy, Paola LM ; Cunliffe, Vincent T ; Huisken, Jan ; McGown, Alexander ; Ramesh, Tennore ; Chico, Tim JA ; Howarth, Clare</creator><creatorcontrib>Chhabria, Karishma ; Plant, Karen ; Bandmann, Oliver ; Wilkinson, Robert N ; Martin, Chris ; Kugler, Elisabeth ; Armitage, Paul A ; Santoscoy, Paola LM ; Cunliffe, Vincent T ; Huisken, Jan ; McGown, Alexander ; Ramesh, Tennore ; Chico, Tim JA ; Howarth, Clare</creatorcontrib><description>Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X18810615</identifier><identifier>PMID: 30398083</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Action Potentials ; Animals ; Brain - blood supply ; Brain - pathology ; Brain - physiopathology ; Cerebral Arteries - pathology ; Cerebral Arteries - physiopathology ; Cerebral Veins - pathology ; Cerebral Veins - physiopathology ; Cerebrovascular Circulation ; Hyperglycemia - blood ; Hyperglycemia - pathology ; Hyperglycemia - physiopathology ; Neovascularization, Pathologic - pathology ; Neovascularization, Pathologic - physiopathology ; Neurovascular Coupling ; Original ; Zebrafish</subject><ispartof>Journal of cerebral blood flow and metabolism, 2020-02, Vol.40 (2), p.298-313</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018 2018 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-265274ec70fc1f773725a86981fe0b25fd18f116ffc75e311a9c682f59eb065d3</citedby><cites>FETCH-LOGICAL-c500t-265274ec70fc1f773725a86981fe0b25fd18f116ffc75e311a9c682f59eb065d3</cites><orcidid>0000-0003-2536-6140 ; 0000-0001-8570-0871 ; 0000-0002-6660-9770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985997/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985997/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,21800,27905,27906,43602,43603,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30398083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chhabria, Karishma</creatorcontrib><creatorcontrib>Plant, Karen</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><creatorcontrib>Wilkinson, Robert N</creatorcontrib><creatorcontrib>Martin, Chris</creatorcontrib><creatorcontrib>Kugler, Elisabeth</creatorcontrib><creatorcontrib>Armitage, Paul A</creatorcontrib><creatorcontrib>Santoscoy, Paola LM</creatorcontrib><creatorcontrib>Cunliffe, Vincent T</creatorcontrib><creatorcontrib>Huisken, Jan</creatorcontrib><creatorcontrib>McGown, Alexander</creatorcontrib><creatorcontrib>Ramesh, Tennore</creatorcontrib><creatorcontrib>Chico, Tim JA</creatorcontrib><creatorcontrib>Howarth, Clare</creatorcontrib><title>The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Brain - blood supply</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Cerebral Arteries - pathology</subject><subject>Cerebral Arteries - physiopathology</subject><subject>Cerebral Veins - pathology</subject><subject>Cerebral Veins - physiopathology</subject><subject>Cerebrovascular Circulation</subject><subject>Hyperglycemia - blood</subject><subject>Hyperglycemia - pathology</subject><subject>Hyperglycemia - physiopathology</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Neovascularization, Pathologic - physiopathology</subject><subject>Neurovascular Coupling</subject><subject>Original</subject><subject>Zebrafish</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1rGzEQxUVJaJy0956KjrlsO7NbfeylUEKSBgK5JJCbkOWRvWEtbaXdgPPXR8auSQM9DcPvzZthHmNfEL4hKvUdaoVS6UfUGkGi-MBmKERbKUB5xGZbXG35CTvN-QkAdCPER3bSQNPq0syYvV8RJ-_JjTx6vtoMlJb9xtG6szwGHmhK8dlmN_U2cRenoe_Cktuw4I4Szd_AwY4jpbDFXeAvhVnf5dUnduxtn-nzvp6xh6vL-4vf1e3d9c3Fr9vKCYCxqqWo1Q9yCrxDr1SjamG1bDV6gnkt_AK1R5TeOyWoQbStk7r2oqU5SLFoztjPne8wzde0cBTGZHszpG5t08ZE25l_SehWZhmfTdkh2lYVg_O9QYp_JsqjWXfZUd_bQHHKpsbyNmikhiKFndSlmHMif1iDYLbJmPfJlJGvb887DPyNogiqnSDbJZmnOKVQ3vV_w1daM5j2</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chhabria, Karishma</creator><creator>Plant, Karen</creator><creator>Bandmann, Oliver</creator><creator>Wilkinson, Robert N</creator><creator>Martin, Chris</creator><creator>Kugler, Elisabeth</creator><creator>Armitage, Paul A</creator><creator>Santoscoy, Paola LM</creator><creator>Cunliffe, Vincent T</creator><creator>Huisken, Jan</creator><creator>McGown, Alexander</creator><creator>Ramesh, Tennore</creator><creator>Chico, Tim JA</creator><creator>Howarth, Clare</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2536-6140</orcidid><orcidid>https://orcid.org/0000-0001-8570-0871</orcidid><orcidid>https://orcid.org/0000-0002-6660-9770</orcidid></search><sort><creationdate>20200201</creationdate><title>The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish</title><author>Chhabria, Karishma ; Plant, Karen ; Bandmann, Oliver ; Wilkinson, Robert N ; Martin, Chris ; Kugler, Elisabeth ; Armitage, Paul A ; Santoscoy, Paola LM ; Cunliffe, Vincent T ; Huisken, Jan ; McGown, Alexander ; Ramesh, Tennore ; Chico, Tim JA ; Howarth, Clare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-265274ec70fc1f773725a86981fe0b25fd18f116ffc75e311a9c682f59eb065d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Brain - blood supply</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Cerebral Arteries - pathology</topic><topic>Cerebral Arteries - physiopathology</topic><topic>Cerebral Veins - pathology</topic><topic>Cerebral Veins - physiopathology</topic><topic>Cerebrovascular Circulation</topic><topic>Hyperglycemia - blood</topic><topic>Hyperglycemia - pathology</topic><topic>Hyperglycemia - physiopathology</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Neovascularization, Pathologic - physiopathology</topic><topic>Neurovascular Coupling</topic><topic>Original</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhabria, Karishma</creatorcontrib><creatorcontrib>Plant, Karen</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><creatorcontrib>Wilkinson, Robert N</creatorcontrib><creatorcontrib>Martin, Chris</creatorcontrib><creatorcontrib>Kugler, Elisabeth</creatorcontrib><creatorcontrib>Armitage, Paul A</creatorcontrib><creatorcontrib>Santoscoy, Paola LM</creatorcontrib><creatorcontrib>Cunliffe, Vincent T</creatorcontrib><creatorcontrib>Huisken, Jan</creatorcontrib><creatorcontrib>McGown, Alexander</creatorcontrib><creatorcontrib>Ramesh, Tennore</creatorcontrib><creatorcontrib>Chico, Tim JA</creatorcontrib><creatorcontrib>Howarth, Clare</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhabria, Karishma</au><au>Plant, Karen</au><au>Bandmann, Oliver</au><au>Wilkinson, Robert N</au><au>Martin, Chris</au><au>Kugler, Elisabeth</au><au>Armitage, Paul A</au><au>Santoscoy, Paola LM</au><au>Cunliffe, Vincent T</au><au>Huisken, Jan</au><au>McGown, Alexander</au><au>Ramesh, Tennore</au><au>Chico, Tim JA</au><au>Howarth, Clare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>40</volume><issue>2</issue><spage>298</spage><epage>313</epage><pages>298-313</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30398083</pmid><doi>10.1177/0271678X18810615</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2536-6140</orcidid><orcidid>https://orcid.org/0000-0001-8570-0871</orcidid><orcidid>https://orcid.org/0000-0002-6660-9770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2020-02, Vol.40 (2), p.298-313 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985997 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SAGE Complete A-Z List; PubMed Central |
subjects | Action Potentials Animals Brain - blood supply Brain - pathology Brain - physiopathology Cerebral Arteries - pathology Cerebral Arteries - physiopathology Cerebral Veins - pathology Cerebral Veins - physiopathology Cerebrovascular Circulation Hyperglycemia - blood Hyperglycemia - pathology Hyperglycemia - physiopathology Neovascularization, Pathologic - pathology Neovascularization, Pathologic - physiopathology Neurovascular Coupling Original Zebrafish |
title | The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20hyperglycemia%20on%20neurovascular%20coupling%20and%20cerebrovascular%20patterning%20in%20zebrafish&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Chhabria,%20Karishma&rft.date=2020-02-01&rft.volume=40&rft.issue=2&rft.spage=298&rft.epage=313&rft.pages=298-313&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X18810615&rft_dat=%3Cproquest_pubme%3E2130303680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130303680&rft_id=info:pmid/30398083&rft_sage_id=10.1177_0271678X18810615&rfr_iscdi=true |