The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish

Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2020-02, Vol.40 (2), p.298-313
Hauptverfasser: Chhabria, Karishma, Plant, Karen, Bandmann, Oliver, Wilkinson, Robert N, Martin, Chris, Kugler, Elisabeth, Armitage, Paul A, Santoscoy, Paola LM, Cunliffe, Vincent T, Huisken, Jan, McGown, Alexander, Ramesh, Tennore, Chico, Tim JA, Howarth, Clare
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 2
container_start_page 298
container_title Journal of cerebral blood flow and metabolism
container_volume 40
creator Chhabria, Karishma
Plant, Karen
Bandmann, Oliver
Wilkinson, Robert N
Martin, Chris
Kugler, Elisabeth
Armitage, Paul A
Santoscoy, Paola LM
Cunliffe, Vincent T
Huisken, Jan
McGown, Alexander
Ramesh, Tennore
Chico, Tim JA
Howarth, Clare
description Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.
doi_str_mv 10.1177/0271678X18810615
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X18810615</sage_id><sourcerecordid>2130303680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-265274ec70fc1f773725a86981fe0b25fd18f116ffc75e311a9c682f59eb065d3</originalsourceid><addsrcrecordid>eNp1kc1rGzEQxUVJaJy0956KjrlsO7NbfeylUEKSBgK5JJCbkOWRvWEtbaXdgPPXR8auSQM9DcPvzZthHmNfEL4hKvUdaoVS6UfUGkGi-MBmKERbKUB5xGZbXG35CTvN-QkAdCPER3bSQNPq0syYvV8RJ-_JjTx6vtoMlJb9xtG6szwGHmhK8dlmN_U2cRenoe_Cktuw4I4Szd_AwY4jpbDFXeAvhVnf5dUnduxtn-nzvp6xh6vL-4vf1e3d9c3Fr9vKCYCxqqWo1Q9yCrxDr1SjamG1bDV6gnkt_AK1R5TeOyWoQbStk7r2oqU5SLFoztjPne8wzde0cBTGZHszpG5t08ZE25l_SehWZhmfTdkh2lYVg_O9QYp_JsqjWXfZUd_bQHHKpsbyNmikhiKFndSlmHMif1iDYLbJmPfJlJGvb887DPyNogiqnSDbJZmnOKVQ3vV_w1daM5j2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130303680</pqid></control><display><type>article</type><title>The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SAGE Complete A-Z List</source><source>PubMed Central</source><creator>Chhabria, Karishma ; Plant, Karen ; Bandmann, Oliver ; Wilkinson, Robert N ; Martin, Chris ; Kugler, Elisabeth ; Armitage, Paul A ; Santoscoy, Paola LM ; Cunliffe, Vincent T ; Huisken, Jan ; McGown, Alexander ; Ramesh, Tennore ; Chico, Tim JA ; Howarth, Clare</creator><creatorcontrib>Chhabria, Karishma ; Plant, Karen ; Bandmann, Oliver ; Wilkinson, Robert N ; Martin, Chris ; Kugler, Elisabeth ; Armitage, Paul A ; Santoscoy, Paola LM ; Cunliffe, Vincent T ; Huisken, Jan ; McGown, Alexander ; Ramesh, Tennore ; Chico, Tim JA ; Howarth, Clare</creatorcontrib><description>Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X18810615</identifier><identifier>PMID: 30398083</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Action Potentials ; Animals ; Brain - blood supply ; Brain - pathology ; Brain - physiopathology ; Cerebral Arteries - pathology ; Cerebral Arteries - physiopathology ; Cerebral Veins - pathology ; Cerebral Veins - physiopathology ; Cerebrovascular Circulation ; Hyperglycemia - blood ; Hyperglycemia - pathology ; Hyperglycemia - physiopathology ; Neovascularization, Pathologic - pathology ; Neovascularization, Pathologic - physiopathology ; Neurovascular Coupling ; Original ; Zebrafish</subject><ispartof>Journal of cerebral blood flow and metabolism, 2020-02, Vol.40 (2), p.298-313</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018 2018 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-265274ec70fc1f773725a86981fe0b25fd18f116ffc75e311a9c682f59eb065d3</citedby><cites>FETCH-LOGICAL-c500t-265274ec70fc1f773725a86981fe0b25fd18f116ffc75e311a9c682f59eb065d3</cites><orcidid>0000-0003-2536-6140 ; 0000-0001-8570-0871 ; 0000-0002-6660-9770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985997/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985997/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,21800,27905,27906,43602,43603,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30398083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chhabria, Karishma</creatorcontrib><creatorcontrib>Plant, Karen</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><creatorcontrib>Wilkinson, Robert N</creatorcontrib><creatorcontrib>Martin, Chris</creatorcontrib><creatorcontrib>Kugler, Elisabeth</creatorcontrib><creatorcontrib>Armitage, Paul A</creatorcontrib><creatorcontrib>Santoscoy, Paola LM</creatorcontrib><creatorcontrib>Cunliffe, Vincent T</creatorcontrib><creatorcontrib>Huisken, Jan</creatorcontrib><creatorcontrib>McGown, Alexander</creatorcontrib><creatorcontrib>Ramesh, Tennore</creatorcontrib><creatorcontrib>Chico, Tim JA</creatorcontrib><creatorcontrib>Howarth, Clare</creatorcontrib><title>The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Brain - blood supply</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Cerebral Arteries - pathology</subject><subject>Cerebral Arteries - physiopathology</subject><subject>Cerebral Veins - pathology</subject><subject>Cerebral Veins - physiopathology</subject><subject>Cerebrovascular Circulation</subject><subject>Hyperglycemia - blood</subject><subject>Hyperglycemia - pathology</subject><subject>Hyperglycemia - physiopathology</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Neovascularization, Pathologic - physiopathology</subject><subject>Neurovascular Coupling</subject><subject>Original</subject><subject>Zebrafish</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1rGzEQxUVJaJy0956KjrlsO7NbfeylUEKSBgK5JJCbkOWRvWEtbaXdgPPXR8auSQM9DcPvzZthHmNfEL4hKvUdaoVS6UfUGkGi-MBmKERbKUB5xGZbXG35CTvN-QkAdCPER3bSQNPq0syYvV8RJ-_JjTx6vtoMlJb9xtG6szwGHmhK8dlmN_U2cRenoe_Cktuw4I4Szd_AwY4jpbDFXeAvhVnf5dUnduxtn-nzvp6xh6vL-4vf1e3d9c3Fr9vKCYCxqqWo1Q9yCrxDr1SjamG1bDV6gnkt_AK1R5TeOyWoQbStk7r2oqU5SLFoztjPne8wzde0cBTGZHszpG5t08ZE25l_SehWZhmfTdkh2lYVg_O9QYp_JsqjWXfZUd_bQHHKpsbyNmikhiKFndSlmHMif1iDYLbJmPfJlJGvb887DPyNogiqnSDbJZmnOKVQ3vV_w1daM5j2</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chhabria, Karishma</creator><creator>Plant, Karen</creator><creator>Bandmann, Oliver</creator><creator>Wilkinson, Robert N</creator><creator>Martin, Chris</creator><creator>Kugler, Elisabeth</creator><creator>Armitage, Paul A</creator><creator>Santoscoy, Paola LM</creator><creator>Cunliffe, Vincent T</creator><creator>Huisken, Jan</creator><creator>McGown, Alexander</creator><creator>Ramesh, Tennore</creator><creator>Chico, Tim JA</creator><creator>Howarth, Clare</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2536-6140</orcidid><orcidid>https://orcid.org/0000-0001-8570-0871</orcidid><orcidid>https://orcid.org/0000-0002-6660-9770</orcidid></search><sort><creationdate>20200201</creationdate><title>The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish</title><author>Chhabria, Karishma ; Plant, Karen ; Bandmann, Oliver ; Wilkinson, Robert N ; Martin, Chris ; Kugler, Elisabeth ; Armitage, Paul A ; Santoscoy, Paola LM ; Cunliffe, Vincent T ; Huisken, Jan ; McGown, Alexander ; Ramesh, Tennore ; Chico, Tim JA ; Howarth, Clare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-265274ec70fc1f773725a86981fe0b25fd18f116ffc75e311a9c682f59eb065d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Brain - blood supply</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Cerebral Arteries - pathology</topic><topic>Cerebral Arteries - physiopathology</topic><topic>Cerebral Veins - pathology</topic><topic>Cerebral Veins - physiopathology</topic><topic>Cerebrovascular Circulation</topic><topic>Hyperglycemia - blood</topic><topic>Hyperglycemia - pathology</topic><topic>Hyperglycemia - physiopathology</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Neovascularization, Pathologic - physiopathology</topic><topic>Neurovascular Coupling</topic><topic>Original</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhabria, Karishma</creatorcontrib><creatorcontrib>Plant, Karen</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><creatorcontrib>Wilkinson, Robert N</creatorcontrib><creatorcontrib>Martin, Chris</creatorcontrib><creatorcontrib>Kugler, Elisabeth</creatorcontrib><creatorcontrib>Armitage, Paul A</creatorcontrib><creatorcontrib>Santoscoy, Paola LM</creatorcontrib><creatorcontrib>Cunliffe, Vincent T</creatorcontrib><creatorcontrib>Huisken, Jan</creatorcontrib><creatorcontrib>McGown, Alexander</creatorcontrib><creatorcontrib>Ramesh, Tennore</creatorcontrib><creatorcontrib>Chico, Tim JA</creatorcontrib><creatorcontrib>Howarth, Clare</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhabria, Karishma</au><au>Plant, Karen</au><au>Bandmann, Oliver</au><au>Wilkinson, Robert N</au><au>Martin, Chris</au><au>Kugler, Elisabeth</au><au>Armitage, Paul A</au><au>Santoscoy, Paola LM</au><au>Cunliffe, Vincent T</au><au>Huisken, Jan</au><au>McGown, Alexander</au><au>Ramesh, Tennore</au><au>Chico, Tim JA</au><au>Howarth, Clare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>40</volume><issue>2</issue><spage>298</spage><epage>313</epage><pages>298-313</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30398083</pmid><doi>10.1177/0271678X18810615</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2536-6140</orcidid><orcidid>https://orcid.org/0000-0001-8570-0871</orcidid><orcidid>https://orcid.org/0000-0002-6660-9770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2020-02, Vol.40 (2), p.298-313
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985997
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SAGE Complete A-Z List; PubMed Central
subjects Action Potentials
Animals
Brain - blood supply
Brain - pathology
Brain - physiopathology
Cerebral Arteries - pathology
Cerebral Arteries - physiopathology
Cerebral Veins - pathology
Cerebral Veins - physiopathology
Cerebrovascular Circulation
Hyperglycemia - blood
Hyperglycemia - pathology
Hyperglycemia - physiopathology
Neovascularization, Pathologic - pathology
Neovascularization, Pathologic - physiopathology
Neurovascular Coupling
Original
Zebrafish
title The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20hyperglycemia%20on%20neurovascular%20coupling%20and%20cerebrovascular%20patterning%20in%20zebrafish&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Chhabria,%20Karishma&rft.date=2020-02-01&rft.volume=40&rft.issue=2&rft.spage=298&rft.epage=313&rft.pages=298-313&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X18810615&rft_dat=%3Cproquest_pubme%3E2130303680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130303680&rft_id=info:pmid/30398083&rft_sage_id=10.1177_0271678X18810615&rfr_iscdi=true