Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway

Summary Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese medicines, has been proven to have a wide range of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. Previous studies have confirmed that emodin has inhibitory effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigational new drugs 2020-02, Vol.38 (1), p.50-59
Hauptverfasser: Zhou, Jiabin, Li, Genhua, Han, Guangkui, Feng, Song, Liu, Yuhan, Chen, Jun, Liu, Chen, Zhao, Lei, Jin, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 50
container_title Investigational new drugs
container_volume 38
creator Zhou, Jiabin
Li, Genhua
Han, Guangkui
Feng, Song
Liu, Yuhan
Chen, Jun
Liu, Chen
Zhao, Lei
Jin, Feng
description Summary Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese medicines, has been proven to have a wide range of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. Previous studies have confirmed that emodin has inhibitory effects on various solid tumors, such as osteosarcoma, liver cancer, prostate cancer and glioma. This study aimed to investigate the effects and mechanisms of emodin-induced necroptosis in the glioma cell line U251 by targeting the TNF-α/RIP1/RIP3 signaling pathway. We found that emodin could significantly inhibit U251 cell proliferation, and the viability of U251 cells treated with emodin was reduced in a dose- and time-dependent manner. Flow cytometry assays and Hoechst-PI staining assays showed that emodin induced apoptosis and necroptosis. Real-time PCR and western blot analysis showed that emodin upregulated the levels of TNF-α, RIP1, RIP3 and MLKL. Furthermore, the RIP1 inhibitor Nec-1 and the RIP3 inhibitor GSK872 attenuated the killing effect of emodin on U251 cells. In addition, emodin could increase the levels of TNF-α, RIP1, RIP3 and MLKL in vivo. The results demonstrate that emodin could induce necroptosis in glioma possibly through the activation of the TNF-α/RIP1/RIP3 axis. These studies provide novel insight into the induction of necroptosis by emodin and indicate that emodin might be a potential candidate for treating glioma through the necroptosis pathway.
doi_str_mv 10.1007/s10637-019-00764-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198880724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c3dbbb6a62f452c8a1794bd1789b6d83b8e0ae91f9cd7c1dac9d3bcf5413df633</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EokPhBVggS2y6MfUtvmyQUNVCpQoQaiV2lmM7M64Se4iTjvpYvAjPhNMp5bJgY8s-3_nt__wAvCT4DcFYHheCBZMIE43qUXC0ewRWpJEMYcHFY7DCREgktJYH4Fkp1xhjpiV_Cg4Y1pRjylfg6-mQfUwwJj-74GEKbszbKZdY6h2cNgGu-5gHC13oe9jHFOAVbQi8ifauevnxDP34fvzl_DNZFga3dtrs7O1z8KSzfQkv7vdDcHV2ennyAV18en9-8u4COS75hBzzbdsKK2jHG-qUJVLz1hOpdCu8Yq0K2AZNOu28dMRbpz1rXddwwnwnGDsEb_e627kdgnchTaPtzXaMgx1vTbbR_F1JcWPW-cYIrRqsFoGje4Exf5tDmcwQy2LWppDnYihdhiuk1BV9_Q96necxVXuGEq2UwpLyStE9VSdZyhi6h88QbJbgzD44U4Mzd8GZXW169aeNh5ZfSVWA7YFSS2kdxt9v_0f2JyoZpHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198880724</pqid></control><display><type>article</type><title>Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Jiabin ; Li, Genhua ; Han, Guangkui ; Feng, Song ; Liu, Yuhan ; Chen, Jun ; Liu, Chen ; Zhao, Lei ; Jin, Feng</creator><creatorcontrib>Zhou, Jiabin ; Li, Genhua ; Han, Guangkui ; Feng, Song ; Liu, Yuhan ; Chen, Jun ; Liu, Chen ; Zhao, Lei ; Jin, Feng</creatorcontrib><description>Summary Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese medicines, has been proven to have a wide range of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. Previous studies have confirmed that emodin has inhibitory effects on various solid tumors, such as osteosarcoma, liver cancer, prostate cancer and glioma. This study aimed to investigate the effects and mechanisms of emodin-induced necroptosis in the glioma cell line U251 by targeting the TNF-α/RIP1/RIP3 signaling pathway. We found that emodin could significantly inhibit U251 cell proliferation, and the viability of U251 cells treated with emodin was reduced in a dose- and time-dependent manner. Flow cytometry assays and Hoechst-PI staining assays showed that emodin induced apoptosis and necroptosis. Real-time PCR and western blot analysis showed that emodin upregulated the levels of TNF-α, RIP1, RIP3 and MLKL. Furthermore, the RIP1 inhibitor Nec-1 and the RIP3 inhibitor GSK872 attenuated the killing effect of emodin on U251 cells. In addition, emodin could increase the levels of TNF-α, RIP1, RIP3 and MLKL in vivo. The results demonstrate that emodin could induce necroptosis in glioma possibly through the activation of the TNF-α/RIP1/RIP3 axis. These studies provide novel insight into the induction of necroptosis by emodin and indicate that emodin might be a potential candidate for treating glioma through the necroptosis pathway.</description><identifier>ISSN: 0167-6997</identifier><identifier>EISSN: 1573-0646</identifier><identifier>DOI: 10.1007/s10637-019-00764-w</identifier><identifier>PMID: 30924024</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Anthraquinone ; Anticancer properties ; Apoptosis ; Biocompatibility ; Biomedical materials ; Bone cancer ; Brain tumors ; Cancer ; Cell Cycle ; Cell Proliferation ; Emodin ; Emodin - pharmacology ; Female ; Flow cytometry ; Glioma ; Glioma - drug therapy ; Glioma - metabolism ; Glioma - pathology ; Glioma cells ; Herbal medicine ; Humans ; Inflammation ; Inhibitors ; Liver ; Liver cancer ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Necroptosis ; Necrosis ; Nuclear Pore Complex Proteins - genetics ; Nuclear Pore Complex Proteins - metabolism ; Oncology ; Osteosarcoma ; Pharmacology ; Pharmacology/Toxicology ; Preclinical Studies ; Prostate cancer ; Protein Kinase Inhibitors - pharmacology ; Reactive Oxygen Species - metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases - genetics ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Rhubarb ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Sarcoma ; Signal Transduction ; Solid tumors ; Studies ; Time dependence ; Traditional Chinese medicine ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-α ; Viability ; Xenograft Model Antitumor Assays</subject><ispartof>Investigational new drugs, 2020-02, Vol.38 (1), p.50-59</ispartof><rights>The Author(s) 2019</rights><rights>Investigational New Drugs is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c3dbbb6a62f452c8a1794bd1789b6d83b8e0ae91f9cd7c1dac9d3bcf5413df633</citedby><cites>FETCH-LOGICAL-c474t-c3dbbb6a62f452c8a1794bd1789b6d83b8e0ae91f9cd7c1dac9d3bcf5413df633</cites><orcidid>0000-0002-6558-9405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10637-019-00764-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10637-019-00764-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30924024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jiabin</creatorcontrib><creatorcontrib>Li, Genhua</creatorcontrib><creatorcontrib>Han, Guangkui</creatorcontrib><creatorcontrib>Feng, Song</creatorcontrib><creatorcontrib>Liu, Yuhan</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><title>Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway</title><title>Investigational new drugs</title><addtitle>Invest New Drugs</addtitle><addtitle>Invest New Drugs</addtitle><description>Summary Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese medicines, has been proven to have a wide range of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. Previous studies have confirmed that emodin has inhibitory effects on various solid tumors, such as osteosarcoma, liver cancer, prostate cancer and glioma. This study aimed to investigate the effects and mechanisms of emodin-induced necroptosis in the glioma cell line U251 by targeting the TNF-α/RIP1/RIP3 signaling pathway. We found that emodin could significantly inhibit U251 cell proliferation, and the viability of U251 cells treated with emodin was reduced in a dose- and time-dependent manner. Flow cytometry assays and Hoechst-PI staining assays showed that emodin induced apoptosis and necroptosis. Real-time PCR and western blot analysis showed that emodin upregulated the levels of TNF-α, RIP1, RIP3 and MLKL. Furthermore, the RIP1 inhibitor Nec-1 and the RIP3 inhibitor GSK872 attenuated the killing effect of emodin on U251 cells. In addition, emodin could increase the levels of TNF-α, RIP1, RIP3 and MLKL in vivo. The results demonstrate that emodin could induce necroptosis in glioma possibly through the activation of the TNF-α/RIP1/RIP3 axis. These studies provide novel insight into the induction of necroptosis by emodin and indicate that emodin might be a potential candidate for treating glioma through the necroptosis pathway.</description><subject>Animals</subject><subject>Anthraquinone</subject><subject>Anticancer properties</subject><subject>Apoptosis</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone cancer</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cell Cycle</subject><subject>Cell Proliferation</subject><subject>Emodin</subject><subject>Emodin - pharmacology</subject><subject>Female</subject><subject>Flow cytometry</subject><subject>Glioma</subject><subject>Glioma - drug therapy</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Glioma cells</subject><subject>Herbal medicine</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inhibitors</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Necroptosis</subject><subject>Necrosis</subject><subject>Nuclear Pore Complex Proteins - genetics</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>Oncology</subject><subject>Osteosarcoma</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Preclinical Studies</subject><subject>Prostate cancer</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Rhubarb</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Sarcoma</subject><subject>Signal Transduction</subject><subject>Solid tumors</subject><subject>Studies</subject><subject>Time dependence</subject><subject>Traditional Chinese medicine</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-α</subject><subject>Viability</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0167-6997</issn><issn>1573-0646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctu1DAUhi0EokPhBVggS2y6MfUtvmyQUNVCpQoQaiV2lmM7M64Se4iTjvpYvAjPhNMp5bJgY8s-3_nt__wAvCT4DcFYHheCBZMIE43qUXC0ewRWpJEMYcHFY7DCREgktJYH4Fkp1xhjpiV_Cg4Y1pRjylfg6-mQfUwwJj-74GEKbszbKZdY6h2cNgGu-5gHC13oe9jHFOAVbQi8ifauevnxDP34fvzl_DNZFga3dtrs7O1z8KSzfQkv7vdDcHV2ennyAV18en9-8u4COS75hBzzbdsKK2jHG-qUJVLz1hOpdCu8Yq0K2AZNOu28dMRbpz1rXddwwnwnGDsEb_e627kdgnchTaPtzXaMgx1vTbbR_F1JcWPW-cYIrRqsFoGje4Exf5tDmcwQy2LWppDnYihdhiuk1BV9_Q96necxVXuGEq2UwpLyStE9VSdZyhi6h88QbJbgzD44U4Mzd8GZXW169aeNh5ZfSVWA7YFSS2kdxt9v_0f2JyoZpHQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhou, Jiabin</creator><creator>Li, Genhua</creator><creator>Han, Guangkui</creator><creator>Feng, Song</creator><creator>Liu, Yuhan</creator><creator>Chen, Jun</creator><creator>Liu, Chen</creator><creator>Zhao, Lei</creator><creator>Jin, Feng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6558-9405</orcidid></search><sort><creationdate>20200201</creationdate><title>Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway</title><author>Zhou, Jiabin ; Li, Genhua ; Han, Guangkui ; Feng, Song ; Liu, Yuhan ; Chen, Jun ; Liu, Chen ; Zhao, Lei ; Jin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c3dbbb6a62f452c8a1794bd1789b6d83b8e0ae91f9cd7c1dac9d3bcf5413df633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anthraquinone</topic><topic>Anticancer properties</topic><topic>Apoptosis</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone cancer</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cell Cycle</topic><topic>Cell Proliferation</topic><topic>Emodin</topic><topic>Emodin - pharmacology</topic><topic>Female</topic><topic>Flow cytometry</topic><topic>Glioma</topic><topic>Glioma - drug therapy</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Glioma cells</topic><topic>Herbal medicine</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inhibitors</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Necroptosis</topic><topic>Necrosis</topic><topic>Nuclear Pore Complex Proteins - genetics</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>Oncology</topic><topic>Osteosarcoma</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Preclinical Studies</topic><topic>Prostate cancer</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Rhubarb</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Sarcoma</topic><topic>Signal Transduction</topic><topic>Solid tumors</topic><topic>Studies</topic><topic>Time dependence</topic><topic>Traditional Chinese medicine</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-α</topic><topic>Viability</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jiabin</creatorcontrib><creatorcontrib>Li, Genhua</creatorcontrib><creatorcontrib>Han, Guangkui</creatorcontrib><creatorcontrib>Feng, Song</creatorcontrib><creatorcontrib>Liu, Yuhan</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Investigational new drugs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jiabin</au><au>Li, Genhua</au><au>Han, Guangkui</au><au>Feng, Song</au><au>Liu, Yuhan</au><au>Chen, Jun</au><au>Liu, Chen</au><au>Zhao, Lei</au><au>Jin, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway</atitle><jtitle>Investigational new drugs</jtitle><stitle>Invest New Drugs</stitle><addtitle>Invest New Drugs</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>38</volume><issue>1</issue><spage>50</spage><epage>59</epage><pages>50-59</pages><issn>0167-6997</issn><eissn>1573-0646</eissn><abstract>Summary Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese medicines, has been proven to have a wide range of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. Previous studies have confirmed that emodin has inhibitory effects on various solid tumors, such as osteosarcoma, liver cancer, prostate cancer and glioma. This study aimed to investigate the effects and mechanisms of emodin-induced necroptosis in the glioma cell line U251 by targeting the TNF-α/RIP1/RIP3 signaling pathway. We found that emodin could significantly inhibit U251 cell proliferation, and the viability of U251 cells treated with emodin was reduced in a dose- and time-dependent manner. Flow cytometry assays and Hoechst-PI staining assays showed that emodin induced apoptosis and necroptosis. Real-time PCR and western blot analysis showed that emodin upregulated the levels of TNF-α, RIP1, RIP3 and MLKL. Furthermore, the RIP1 inhibitor Nec-1 and the RIP3 inhibitor GSK872 attenuated the killing effect of emodin on U251 cells. In addition, emodin could increase the levels of TNF-α, RIP1, RIP3 and MLKL in vivo. The results demonstrate that emodin could induce necroptosis in glioma possibly through the activation of the TNF-α/RIP1/RIP3 axis. These studies provide novel insight into the induction of necroptosis by emodin and indicate that emodin might be a potential candidate for treating glioma through the necroptosis pathway.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30924024</pmid><doi>10.1007/s10637-019-00764-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6558-9405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6997
ispartof Investigational new drugs, 2020-02, Vol.38 (1), p.50-59
issn 0167-6997
1573-0646
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985083
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Anthraquinone
Anticancer properties
Apoptosis
Biocompatibility
Biomedical materials
Bone cancer
Brain tumors
Cancer
Cell Cycle
Cell Proliferation
Emodin
Emodin - pharmacology
Female
Flow cytometry
Glioma
Glioma - drug therapy
Glioma - metabolism
Glioma - pathology
Glioma cells
Herbal medicine
Humans
Inflammation
Inhibitors
Liver
Liver cancer
Medicine
Medicine & Public Health
Mice
Mice, Inbred BALB C
Mice, Nude
Necroptosis
Necrosis
Nuclear Pore Complex Proteins - genetics
Nuclear Pore Complex Proteins - metabolism
Oncology
Osteosarcoma
Pharmacology
Pharmacology/Toxicology
Preclinical Studies
Prostate cancer
Protein Kinase Inhibitors - pharmacology
Reactive Oxygen Species - metabolism
Receptor-Interacting Protein Serine-Threonine Kinases - genetics
Receptor-Interacting Protein Serine-Threonine Kinases - metabolism
Rhubarb
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Sarcoma
Signal Transduction
Solid tumors
Studies
Time dependence
Traditional Chinese medicine
Tumor Cells, Cultured
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-α
Viability
Xenograft Model Antitumor Assays
title Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emodin%20induced%20necroptosis%20in%20the%20glioma%20cell%20line%20U251%20via%20the%20TNF-%CE%B1/RIP1/RIP3%20pathway&rft.jtitle=Investigational%20new%20drugs&rft.au=Zhou,%20Jiabin&rft.date=2020-02-01&rft.volume=38&rft.issue=1&rft.spage=50&rft.epage=59&rft.pages=50-59&rft.issn=0167-6997&rft.eissn=1573-0646&rft_id=info:doi/10.1007/s10637-019-00764-w&rft_dat=%3Cproquest_pubme%3E2198880724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198880724&rft_id=info:pmid/30924024&rfr_iscdi=true