Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet
Abstract Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition a...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 2020-01, Vol.98 (1), p.1-15 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of animal science |
container_volume | 98 |
creator | Esposito, Giulia Raffrenato, Emiliano Lukamba, Somwe D Adnane, Mounir Irons, Pete C Cormican, Paul Tasara, Taurai Chapwanya, Aspinas |
description | Abstract
Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition animals receiving normal or restricted energy diets. Pregnant multiparous Holstein cows (n = 14) were randomly assigned to one of the two dietary treatments from 20 d prepartum until 35 d postpartum (DPP). One group was fed a diet providing 100% energy requirements (NE), whereas the other received an energy-restricted diet providing 80% energy requirements (RE). Feed intake, milk yield, body weight, body condition score, temperature, respiratory, and pulse rate were recorded. After calving, blood was collected weekly to analyze nonesterified fatty acids (NEFAs), β-hydroxybutyrate (BHB), and total cholesterol (TC). Endometrial cytobrushes were collected for gene expression analysis of inflammatory markers, microbial populations determination, and cytological evaluation. The restricted energy diet did not alter feed intake or milk yield but changed energy balance and metabolites levels (P |
doi_str_mv | 10.1093/jas/skz391 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6984754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jas/skz391</oup_id><sourcerecordid>2336255137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-d9b08d4f693440ce72557089aebb65711c0a33e899a6d99f6811f90ccdf5c63b3</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhoO01FvbjT-gDJSCFKYmk0km2QjlYj9A6EbXIZOcaG5nkmsyo1x_fXO9VtSFq7M4z3l4Dy9ChwR_I1jS45XOx_nvHZVkDy0Ia1hNCadv0ALjhtRCkGYfvc95hTFpmGTv0D4lknSC4gUKyyudtJkg-Ts9-Riq6KoRJt3HwZtKB1v54AY9jnqKaVOtU3R-gLzFpqRD9vdHVvuyNPE2Vw5sOasgQLrc1AnylHzx28p6mD6gt04PGT4-zAN08eP0fPmrPvvz8_fy-1ltWsqn2soeC9s6LmnbYgNdw1iHhdTQ95x1hBisKQUhpeZWSscFIU5iY6xjhtOeHqCTnXc99yNYA6GEHdQ6-VGnjYraq-eb4K_UZbxRXIq2Y20RHD0IUryeyxNq9NnAMOgAcc6qoZSXUIR2Bf38Al3FOYXyXqFYK3jTya3w644yKeacwD2GIVhta1SlRrWrscCfnsZ_RP_3VoAvOyDO69dE_wBFIKjf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354862794</pqid></control><display><type>article</type><title>Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Esposito, Giulia ; Raffrenato, Emiliano ; Lukamba, Somwe D ; Adnane, Mounir ; Irons, Pete C ; Cormican, Paul ; Tasara, Taurai ; Chapwanya, Aspinas</creator><creatorcontrib>Esposito, Giulia ; Raffrenato, Emiliano ; Lukamba, Somwe D ; Adnane, Mounir ; Irons, Pete C ; Cormican, Paul ; Tasara, Taurai ; Chapwanya, Aspinas</creatorcontrib><description>Abstract
Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition animals receiving normal or restricted energy diets. Pregnant multiparous Holstein cows (n = 14) were randomly assigned to one of the two dietary treatments from 20 d prepartum until 35 d postpartum (DPP). One group was fed a diet providing 100% energy requirements (NE), whereas the other received an energy-restricted diet providing 80% energy requirements (RE). Feed intake, milk yield, body weight, body condition score, temperature, respiratory, and pulse rate were recorded. After calving, blood was collected weekly to analyze nonesterified fatty acids (NEFAs), β-hydroxybutyrate (BHB), and total cholesterol (TC). Endometrial cytobrushes were collected for gene expression analysis of inflammatory markers, microbial populations determination, and cytological evaluation. The restricted energy diet did not alter feed intake or milk yield but changed energy balance and metabolites levels (P < 0.05). In fact, RE animals had high NEFA and BHB levels, and low TC concentrations (P < 0.05). Moreover, RE animals had upregulated gene expression of serum amyloid A3 (SAA3) at 35 DPP (P < 0.05) and CXC chemokine receptor 2 (CXCR2) at 14 DPP (P < 0.01). Interleukin (IL) 1 and IL8 genes were downregulated 14 DPP but upregulated 35 DPP in RE animals, whereas IL6 and lipopolysaccharide-binding protein (LBP) genes were upregulated at 14 DPP (P ≤ 0.05). The most abundant phyla in RE animals (n = 3) were Bacteroidetes and Fusobacteria, whereas Proteobacteria was the least abundant at both 14 and 35 DPP. In conclusion, it can be speculated that energy balance is one of the main drivers for uterine inflammation by affecting metabolism, immune function, and uterine microbiota. However, these findings should be validated in a larger sample size.</description><identifier>ISSN: 0021-8812</identifier><identifier>EISSN: 1525-3163</identifier><identifier>DOI: 10.1093/jas/skz391</identifier><identifier>PMID: 31917830</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>3-Hydroxybutyric Acid - blood ; Amyloid ; Animals ; Bacteria - genetics ; Body temperature ; Body Weight ; Cattle ; Cattle - blood ; Cattle - metabolism ; Chemokines ; Cholesterol ; Cholesterol - blood ; CXC chemokines ; CXCR2 protein ; Dairy cattle ; Diet ; Diet - standards ; Diet - veterinary ; Dietary restrictions ; Endometrium ; Energy balance ; Energy Intake - physiology ; Energy metabolism ; Energy Metabolism - physiology ; Energy requirements ; Fatty acids ; Fatty Acids, Nonesterified - blood ; Female ; Gene expression ; Genes ; Humans ; Immune response ; Inflammation ; Integrated Animal Science ; Interleukin 6 ; Interleukin 8 ; Interleukins ; Lactation - physiology ; Lipopolysaccharide-binding protein ; Lipopolysaccharides ; Metabolites ; Microbiota ; Microorganisms ; Milk ; Milk - chemistry ; Milk - metabolism ; Nutrient deficiency ; Populations ; Postpartum ; Postpartum Period ; Pregnancy ; Pulse rate ; Real-Time Polymerase Chain Reaction - veterinary ; Respiration ; Reverse Transcription ; RNA, Ribosomal, 16S - genetics ; Uterus ; Uterus - microbiology ; Uterus - pathology</subject><ispartof>Journal of animal science, 2020-01, Vol.98 (1), p.1-15</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>Copyright Oxford University Press Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-d9b08d4f693440ce72557089aebb65711c0a33e899a6d99f6811f90ccdf5c63b3</citedby><cites>FETCH-LOGICAL-c436t-d9b08d4f693440ce72557089aebb65711c0a33e899a6d99f6811f90ccdf5c63b3</cites><orcidid>0000-0001-8386-1890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984754/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984754/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1584,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31917830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Esposito, Giulia</creatorcontrib><creatorcontrib>Raffrenato, Emiliano</creatorcontrib><creatorcontrib>Lukamba, Somwe D</creatorcontrib><creatorcontrib>Adnane, Mounir</creatorcontrib><creatorcontrib>Irons, Pete C</creatorcontrib><creatorcontrib>Cormican, Paul</creatorcontrib><creatorcontrib>Tasara, Taurai</creatorcontrib><creatorcontrib>Chapwanya, Aspinas</creatorcontrib><title>Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet</title><title>Journal of animal science</title><addtitle>J Anim Sci</addtitle><description>Abstract
Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition animals receiving normal or restricted energy diets. Pregnant multiparous Holstein cows (n = 14) were randomly assigned to one of the two dietary treatments from 20 d prepartum until 35 d postpartum (DPP). One group was fed a diet providing 100% energy requirements (NE), whereas the other received an energy-restricted diet providing 80% energy requirements (RE). Feed intake, milk yield, body weight, body condition score, temperature, respiratory, and pulse rate were recorded. After calving, blood was collected weekly to analyze nonesterified fatty acids (NEFAs), β-hydroxybutyrate (BHB), and total cholesterol (TC). Endometrial cytobrushes were collected for gene expression analysis of inflammatory markers, microbial populations determination, and cytological evaluation. The restricted energy diet did not alter feed intake or milk yield but changed energy balance and metabolites levels (P < 0.05). In fact, RE animals had high NEFA and BHB levels, and low TC concentrations (P < 0.05). Moreover, RE animals had upregulated gene expression of serum amyloid A3 (SAA3) at 35 DPP (P < 0.05) and CXC chemokine receptor 2 (CXCR2) at 14 DPP (P < 0.01). Interleukin (IL) 1 and IL8 genes were downregulated 14 DPP but upregulated 35 DPP in RE animals, whereas IL6 and lipopolysaccharide-binding protein (LBP) genes were upregulated at 14 DPP (P ≤ 0.05). The most abundant phyla in RE animals (n = 3) were Bacteroidetes and Fusobacteria, whereas Proteobacteria was the least abundant at both 14 and 35 DPP. In conclusion, it can be speculated that energy balance is one of the main drivers for uterine inflammation by affecting metabolism, immune function, and uterine microbiota. However, these findings should be validated in a larger sample size.</description><subject>3-Hydroxybutyric Acid - blood</subject><subject>Amyloid</subject><subject>Animals</subject><subject>Bacteria - genetics</subject><subject>Body temperature</subject><subject>Body Weight</subject><subject>Cattle</subject><subject>Cattle - blood</subject><subject>Cattle - metabolism</subject><subject>Chemokines</subject><subject>Cholesterol</subject><subject>Cholesterol - blood</subject><subject>CXC chemokines</subject><subject>CXCR2 protein</subject><subject>Dairy cattle</subject><subject>Diet</subject><subject>Diet - standards</subject><subject>Diet - veterinary</subject><subject>Dietary restrictions</subject><subject>Endometrium</subject><subject>Energy balance</subject><subject>Energy Intake - physiology</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Energy requirements</subject><subject>Fatty acids</subject><subject>Fatty Acids, Nonesterified - blood</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Humans</subject><subject>Immune response</subject><subject>Inflammation</subject><subject>Integrated Animal Science</subject><subject>Interleukin 6</subject><subject>Interleukin 8</subject><subject>Interleukins</subject><subject>Lactation - physiology</subject><subject>Lipopolysaccharide-binding protein</subject><subject>Lipopolysaccharides</subject><subject>Metabolites</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Milk</subject><subject>Milk - chemistry</subject><subject>Milk - metabolism</subject><subject>Nutrient deficiency</subject><subject>Populations</subject><subject>Postpartum</subject><subject>Postpartum Period</subject><subject>Pregnancy</subject><subject>Pulse rate</subject><subject>Real-Time Polymerase Chain Reaction - veterinary</subject><subject>Respiration</subject><subject>Reverse Transcription</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Uterus</subject><subject>Uterus - microbiology</subject><subject>Uterus - pathology</subject><issn>0021-8812</issn><issn>1525-3163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1LHTEUhoO01FvbjT-gDJSCFKYmk0km2QjlYj9A6EbXIZOcaG5nkmsyo1x_fXO9VtSFq7M4z3l4Dy9ChwR_I1jS45XOx_nvHZVkDy0Ia1hNCadv0ALjhtRCkGYfvc95hTFpmGTv0D4lknSC4gUKyyudtJkg-Ts9-Riq6KoRJt3HwZtKB1v54AY9jnqKaVOtU3R-gLzFpqRD9vdHVvuyNPE2Vw5sOasgQLrc1AnylHzx28p6mD6gt04PGT4-zAN08eP0fPmrPvvz8_fy-1ltWsqn2soeC9s6LmnbYgNdw1iHhdTQ95x1hBisKQUhpeZWSscFIU5iY6xjhtOeHqCTnXc99yNYA6GEHdQ6-VGnjYraq-eb4K_UZbxRXIq2Y20RHD0IUryeyxNq9NnAMOgAcc6qoZSXUIR2Bf38Al3FOYXyXqFYK3jTya3w644yKeacwD2GIVhta1SlRrWrscCfnsZ_RP_3VoAvOyDO69dE_wBFIKjf</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Esposito, Giulia</creator><creator>Raffrenato, Emiliano</creator><creator>Lukamba, Somwe D</creator><creator>Adnane, Mounir</creator><creator>Irons, Pete C</creator><creator>Cormican, Paul</creator><creator>Tasara, Taurai</creator><creator>Chapwanya, Aspinas</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8386-1890</orcidid></search><sort><creationdate>20200101</creationdate><title>Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet</title><author>Esposito, Giulia ; Raffrenato, Emiliano ; Lukamba, Somwe D ; Adnane, Mounir ; Irons, Pete C ; Cormican, Paul ; Tasara, Taurai ; Chapwanya, Aspinas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-d9b08d4f693440ce72557089aebb65711c0a33e899a6d99f6811f90ccdf5c63b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-Hydroxybutyric Acid - blood</topic><topic>Amyloid</topic><topic>Animals</topic><topic>Bacteria - genetics</topic><topic>Body temperature</topic><topic>Body Weight</topic><topic>Cattle</topic><topic>Cattle - blood</topic><topic>Cattle - metabolism</topic><topic>Chemokines</topic><topic>Cholesterol</topic><topic>Cholesterol - blood</topic><topic>CXC chemokines</topic><topic>CXCR2 protein</topic><topic>Dairy cattle</topic><topic>Diet</topic><topic>Diet - standards</topic><topic>Diet - veterinary</topic><topic>Dietary restrictions</topic><topic>Endometrium</topic><topic>Energy balance</topic><topic>Energy Intake - physiology</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Energy requirements</topic><topic>Fatty acids</topic><topic>Fatty Acids, Nonesterified - blood</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Humans</topic><topic>Immune response</topic><topic>Inflammation</topic><topic>Integrated Animal Science</topic><topic>Interleukin 6</topic><topic>Interleukin 8</topic><topic>Interleukins</topic><topic>Lactation - physiology</topic><topic>Lipopolysaccharide-binding protein</topic><topic>Lipopolysaccharides</topic><topic>Metabolites</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Milk</topic><topic>Milk - chemistry</topic><topic>Milk - metabolism</topic><topic>Nutrient deficiency</topic><topic>Populations</topic><topic>Postpartum</topic><topic>Postpartum Period</topic><topic>Pregnancy</topic><topic>Pulse rate</topic><topic>Real-Time Polymerase Chain Reaction - veterinary</topic><topic>Respiration</topic><topic>Reverse Transcription</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Uterus</topic><topic>Uterus - microbiology</topic><topic>Uterus - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esposito, Giulia</creatorcontrib><creatorcontrib>Raffrenato, Emiliano</creatorcontrib><creatorcontrib>Lukamba, Somwe D</creatorcontrib><creatorcontrib>Adnane, Mounir</creatorcontrib><creatorcontrib>Irons, Pete C</creatorcontrib><creatorcontrib>Cormican, Paul</creatorcontrib><creatorcontrib>Tasara, Taurai</creatorcontrib><creatorcontrib>Chapwanya, Aspinas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of animal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esposito, Giulia</au><au>Raffrenato, Emiliano</au><au>Lukamba, Somwe D</au><au>Adnane, Mounir</au><au>Irons, Pete C</au><au>Cormican, Paul</au><au>Tasara, Taurai</au><au>Chapwanya, Aspinas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet</atitle><jtitle>Journal of animal science</jtitle><addtitle>J Anim Sci</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>98</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0021-8812</issn><eissn>1525-3163</eissn><abstract>Abstract
Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition animals receiving normal or restricted energy diets. Pregnant multiparous Holstein cows (n = 14) were randomly assigned to one of the two dietary treatments from 20 d prepartum until 35 d postpartum (DPP). One group was fed a diet providing 100% energy requirements (NE), whereas the other received an energy-restricted diet providing 80% energy requirements (RE). Feed intake, milk yield, body weight, body condition score, temperature, respiratory, and pulse rate were recorded. After calving, blood was collected weekly to analyze nonesterified fatty acids (NEFAs), β-hydroxybutyrate (BHB), and total cholesterol (TC). Endometrial cytobrushes were collected for gene expression analysis of inflammatory markers, microbial populations determination, and cytological evaluation. The restricted energy diet did not alter feed intake or milk yield but changed energy balance and metabolites levels (P < 0.05). In fact, RE animals had high NEFA and BHB levels, and low TC concentrations (P < 0.05). Moreover, RE animals had upregulated gene expression of serum amyloid A3 (SAA3) at 35 DPP (P < 0.05) and CXC chemokine receptor 2 (CXCR2) at 14 DPP (P < 0.01). Interleukin (IL) 1 and IL8 genes were downregulated 14 DPP but upregulated 35 DPP in RE animals, whereas IL6 and lipopolysaccharide-binding protein (LBP) genes were upregulated at 14 DPP (P ≤ 0.05). The most abundant phyla in RE animals (n = 3) were Bacteroidetes and Fusobacteria, whereas Proteobacteria was the least abundant at both 14 and 35 DPP. In conclusion, it can be speculated that energy balance is one of the main drivers for uterine inflammation by affecting metabolism, immune function, and uterine microbiota. However, these findings should be validated in a larger sample size.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>31917830</pmid><doi>10.1093/jas/skz391</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8386-1890</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8812 |
ispartof | Journal of animal science, 2020-01, Vol.98 (1), p.1-15 |
issn | 0021-8812 1525-3163 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6984754 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3-Hydroxybutyric Acid - blood Amyloid Animals Bacteria - genetics Body temperature Body Weight Cattle Cattle - blood Cattle - metabolism Chemokines Cholesterol Cholesterol - blood CXC chemokines CXCR2 protein Dairy cattle Diet Diet - standards Diet - veterinary Dietary restrictions Endometrium Energy balance Energy Intake - physiology Energy metabolism Energy Metabolism - physiology Energy requirements Fatty acids Fatty Acids, Nonesterified - blood Female Gene expression Genes Humans Immune response Inflammation Integrated Animal Science Interleukin 6 Interleukin 8 Interleukins Lactation - physiology Lipopolysaccharide-binding protein Lipopolysaccharides Metabolites Microbiota Microorganisms Milk Milk - chemistry Milk - metabolism Nutrient deficiency Populations Postpartum Postpartum Period Pregnancy Pulse rate Real-Time Polymerase Chain Reaction - veterinary Respiration Reverse Transcription RNA, Ribosomal, 16S - genetics Uterus Uterus - microbiology Uterus - pathology |
title | Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20metabolic%20and%20inflammatory%20profiles%20of%20transition%20dairy%20cows%20fed%20an%20energy-restricted%20diet&rft.jtitle=Journal%20of%20animal%20science&rft.au=Esposito,%20Giulia&rft.date=2020-01-01&rft.volume=98&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0021-8812&rft.eissn=1525-3163&rft_id=info:doi/10.1093/jas/skz391&rft_dat=%3Cproquest_pubme%3E2336255137%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354862794&rft_id=info:pmid/31917830&rft_oup_id=10.1093/jas/skz391&rfr_iscdi=true |