iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments via Chou's 5-steps Rule and Pseudo Components

Background: The amino acid residues, in protein, undergo post-translation modification (PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current genomics 2019-05, Vol.20 (4), p.306-320
Hauptverfasser: Barukab, Omar, Khan, Yaser Daanial, Khan, Sher Afzal, Chou, Kuo-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 4
container_start_page 306
container_title Current genomics
container_volume 20
creator Barukab, Omar
Khan, Yaser Daanial
Khan, Sher Afzal
Chou, Kuo-Chen
description Background: The amino acid residues, in protein, undergo post-translation modification (PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification which is known to be associated with regulation of various biological functions and pathological processes. Thus its identification is necessary to understand its mechanism. Experimental determination through site-directed mutagenesis and high throughput mass spectrometry is a costly and time taking process, thus, the reliable computational model is required for identification of sulfotyrosine sites. Methodology: In this paper, we present a computational model for the prediction of the sulfotyrosine sites named iSulfoTyr-PseAAC in which feature vectors are constructed using statistical moments of protein amino acid sequences and various position/composition relative features. These features are incorporated into PseAAC. The model is validated by jackknife, cross-validation, self-consistency and independent testing. Results: Accuracy determined through validation was 93.93% for jackknife test, 95.16% for crossvalidation, 94.3% for self-consistency and 94.3% for independent testing. Conclusion: The proposed model has better performance as compared to the existing predictors, however, the accuracy can be improved further, in future, due to increasing number of sulfotyrosine sites in proteins.
doi_str_mv 10.2174/1389202920666190819091609
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6983959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308429495</sourcerecordid><originalsourceid>FETCH-LOGICAL-b4919-6201a19c1d768d2e83d7696b78060d5ec79a49cfac0215b3048afc132ac875193</originalsourceid><addsrcrecordid>eNp1kUuP1DAMxysEYpeFr4CCOHAq5NFHwgFpVPEYaRGIWc5RmrozWdqkJM2M5o743KTMMoIDB8uW_bP9l51lzwh-SUldvCKMC4ppsqqqiMA8mSAVFveyS8LrMi8Lzu-nOHH5Al5kj0K4xZhiXuOH2QWjmGHMxWX202zi0Lubo88_B1itmtdo3YGdTX9EKemCsYAWRM3GWbQxMwTUHtHaaucn51PabtFmTj7MRqsBfXRj6g9obxRqdi6-CKjMwwxTQF_iAEjZDqVVsXOocePk7EI_zh70agjw5M5fZV_fvb1pPuTXn96vm9V13haCiLyimCgiNOnqincUOEuBqNqa4wp3JehaqELoXmlMSdkyXHDVa8Ko0uksRLCr7M1p7hTbETqddns1yMmbUfmjdMrIfyvW7OTW7WUlOBPlMuD53QDvvkcIs7x10dukWVKGeUFFIcpEiROl0wWDh_68gWC5vFD-94Wp9-nfEs-df36WgB8noE0ad2oM2oDVcAZ38zzJw-EgIXr4pgIMoGep3SjdBDb6IcV2Tr1y2k1yC9aDVD49bwBpQrC_tclFnNy7IY6Q4qUQQRYyTGoLkuGK_QL80svk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308429495</pqid></control><display><type>article</type><title>iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments via Chou's 5-steps Rule and Pseudo Components</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Barukab, Omar ; Khan, Yaser Daanial ; Khan, Sher Afzal ; Chou, Kuo-Chen</creator><creatorcontrib>Barukab, Omar ; Khan, Yaser Daanial ; Khan, Sher Afzal ; Chou, Kuo-Chen</creatorcontrib><description>Background: The amino acid residues, in protein, undergo post-translation modification (PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification which is known to be associated with regulation of various biological functions and pathological processes. Thus its identification is necessary to understand its mechanism. Experimental determination through site-directed mutagenesis and high throughput mass spectrometry is a costly and time taking process, thus, the reliable computational model is required for identification of sulfotyrosine sites. Methodology: In this paper, we present a computational model for the prediction of the sulfotyrosine sites named iSulfoTyr-PseAAC in which feature vectors are constructed using statistical moments of protein amino acid sequences and various position/composition relative features. These features are incorporated into PseAAC. The model is validated by jackknife, cross-validation, self-consistency and independent testing. Results: Accuracy determined through validation was 93.93% for jackknife test, 95.16% for crossvalidation, 94.3% for self-consistency and 94.3% for independent testing. Conclusion: The proposed model has better performance as compared to the existing predictors, however, the accuracy can be improved further, in future, due to increasing number of sulfotyrosine sites in proteins.</description><identifier>ISSN: 1389-2029</identifier><identifier>EISSN: 1875-5488</identifier><identifier>DOI: 10.2174/1389202920666190819091609</identifier><identifier>PMID: 32030089</identifier><language>eng</language><publisher>United Arab Emirates: Bentham Science Publishers Ltd</publisher><subject>Accuracy ; Amino acid composition ; Amino acids ; Biological activity ; Chemical synthesis ; Computer applications ; Consistency ; Mass spectrometry ; Mass spectroscopy ; Organic chemistry ; Post-translation ; Protein biosynthesis ; Protein synthesis ; Proteins ; Site-directed mutagenesis ; Statistics ; Sulfation ; Tyrosine</subject><ispartof>Current genomics, 2019-05, Vol.20 (4), p.306-320</ispartof><rights>2019 Bentham Science Publishers.</rights><rights>Copyright Bentham Science May 2019</rights><rights>2019 Bentham Science Publishers 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b4919-6201a19c1d768d2e83d7696b78060d5ec79a49cfac0215b3048afc132ac875193</citedby><cites>FETCH-LOGICAL-b4919-6201a19c1d768d2e83d7696b78060d5ec79a49cfac0215b3048afc132ac875193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983959/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983959/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32030089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barukab, Omar</creatorcontrib><creatorcontrib>Khan, Yaser Daanial</creatorcontrib><creatorcontrib>Khan, Sher Afzal</creatorcontrib><creatorcontrib>Chou, Kuo-Chen</creatorcontrib><title>iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments via Chou's 5-steps Rule and Pseudo Components</title><title>Current genomics</title><addtitle>CG</addtitle><description>Background: The amino acid residues, in protein, undergo post-translation modification (PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification which is known to be associated with regulation of various biological functions and pathological processes. Thus its identification is necessary to understand its mechanism. Experimental determination through site-directed mutagenesis and high throughput mass spectrometry is a costly and time taking process, thus, the reliable computational model is required for identification of sulfotyrosine sites. Methodology: In this paper, we present a computational model for the prediction of the sulfotyrosine sites named iSulfoTyr-PseAAC in which feature vectors are constructed using statistical moments of protein amino acid sequences and various position/composition relative features. These features are incorporated into PseAAC. The model is validated by jackknife, cross-validation, self-consistency and independent testing. Results: Accuracy determined through validation was 93.93% for jackknife test, 95.16% for crossvalidation, 94.3% for self-consistency and 94.3% for independent testing. Conclusion: The proposed model has better performance as compared to the existing predictors, however, the accuracy can be improved further, in future, due to increasing number of sulfotyrosine sites in proteins.</description><subject>Accuracy</subject><subject>Amino acid composition</subject><subject>Amino acids</subject><subject>Biological activity</subject><subject>Chemical synthesis</subject><subject>Computer applications</subject><subject>Consistency</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Organic chemistry</subject><subject>Post-translation</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Site-directed mutagenesis</subject><subject>Statistics</subject><subject>Sulfation</subject><subject>Tyrosine</subject><issn>1389-2029</issn><issn>1875-5488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUuP1DAMxysEYpeFr4CCOHAq5NFHwgFpVPEYaRGIWc5RmrozWdqkJM2M5o743KTMMoIDB8uW_bP9l51lzwh-SUldvCKMC4ppsqqqiMA8mSAVFveyS8LrMi8Lzu-nOHH5Al5kj0K4xZhiXuOH2QWjmGHMxWX202zi0Lubo88_B1itmtdo3YGdTX9EKemCsYAWRM3GWbQxMwTUHtHaaucn51PabtFmTj7MRqsBfXRj6g9obxRqdi6-CKjMwwxTQF_iAEjZDqVVsXOocePk7EI_zh70agjw5M5fZV_fvb1pPuTXn96vm9V13haCiLyimCgiNOnqincUOEuBqNqa4wp3JehaqELoXmlMSdkyXHDVa8Ko0uksRLCr7M1p7hTbETqddns1yMmbUfmjdMrIfyvW7OTW7WUlOBPlMuD53QDvvkcIs7x10dukWVKGeUFFIcpEiROl0wWDh_68gWC5vFD-94Wp9-nfEs-df36WgB8noE0ad2oM2oDVcAZ38zzJw-EgIXr4pgIMoGep3SjdBDb6IcV2Tr1y2k1yC9aDVD49bwBpQrC_tclFnNy7IY6Q4qUQQRYyTGoLkuGK_QL80svk</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Barukab, Omar</creator><creator>Khan, Yaser Daanial</creator><creator>Khan, Sher Afzal</creator><creator>Chou, Kuo-Chen</creator><general>Bentham Science Publishers Ltd</general><general>Benham Science Publishers</general><general>Bentham Science Publishers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments via Chou's 5-steps Rule and Pseudo Components</title><author>Barukab, Omar ; Khan, Yaser Daanial ; Khan, Sher Afzal ; Chou, Kuo-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b4919-6201a19c1d768d2e83d7696b78060d5ec79a49cfac0215b3048afc132ac875193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Amino acid composition</topic><topic>Amino acids</topic><topic>Biological activity</topic><topic>Chemical synthesis</topic><topic>Computer applications</topic><topic>Consistency</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Organic chemistry</topic><topic>Post-translation</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Site-directed mutagenesis</topic><topic>Statistics</topic><topic>Sulfation</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barukab, Omar</creatorcontrib><creatorcontrib>Khan, Yaser Daanial</creatorcontrib><creatorcontrib>Khan, Sher Afzal</creatorcontrib><creatorcontrib>Chou, Kuo-Chen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barukab, Omar</au><au>Khan, Yaser Daanial</au><au>Khan, Sher Afzal</au><au>Chou, Kuo-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments via Chou's 5-steps Rule and Pseudo Components</atitle><jtitle>Current genomics</jtitle><addtitle>CG</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><spage>306</spage><epage>320</epage><pages>306-320</pages><issn>1389-2029</issn><eissn>1875-5488</eissn><abstract>Background: The amino acid residues, in protein, undergo post-translation modification (PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification which is known to be associated with regulation of various biological functions and pathological processes. Thus its identification is necessary to understand its mechanism. Experimental determination through site-directed mutagenesis and high throughput mass spectrometry is a costly and time taking process, thus, the reliable computational model is required for identification of sulfotyrosine sites. Methodology: In this paper, we present a computational model for the prediction of the sulfotyrosine sites named iSulfoTyr-PseAAC in which feature vectors are constructed using statistical moments of protein amino acid sequences and various position/composition relative features. These features are incorporated into PseAAC. The model is validated by jackknife, cross-validation, self-consistency and independent testing. Results: Accuracy determined through validation was 93.93% for jackknife test, 95.16% for crossvalidation, 94.3% for self-consistency and 94.3% for independent testing. Conclusion: The proposed model has better performance as compared to the existing predictors, however, the accuracy can be improved further, in future, due to increasing number of sulfotyrosine sites in proteins.</abstract><cop>United Arab Emirates</cop><pub>Bentham Science Publishers Ltd</pub><pmid>32030089</pmid><doi>10.2174/1389202920666190819091609</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-2029
ispartof Current genomics, 2019-05, Vol.20 (4), p.306-320
issn 1389-2029
1875-5488
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6983959
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Accuracy
Amino acid composition
Amino acids
Biological activity
Chemical synthesis
Computer applications
Consistency
Mass spectrometry
Mass spectroscopy
Organic chemistry
Post-translation
Protein biosynthesis
Protein synthesis
Proteins
Site-directed mutagenesis
Statistics
Sulfation
Tyrosine
title iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments via Chou's 5-steps Rule and Pseudo Components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iSulfoTyr-PseAAC:%20Identify%20Tyrosine%20Sulfation%20Sites%20by%20Incorporating%20Statistical%20Moments%20via%20Chou's%205-steps%20Rule%20and%20Pseudo%20Components&rft.jtitle=Current%20genomics&rft.au=Barukab,%20Omar&rft.date=2019-05-01&rft.volume=20&rft.issue=4&rft.spage=306&rft.epage=320&rft.pages=306-320&rft.issn=1389-2029&rft.eissn=1875-5488&rft_id=info:doi/10.2174/1389202920666190819091609&rft_dat=%3Cproquest_pubme%3E2308429495%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308429495&rft_id=info:pmid/32030089&rfr_iscdi=true