Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice

Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-01, Vol.3 (1), p.44-44, Article 44
Hauptverfasser: Ali, Zahir, Shami, Ashwag, Sedeek, Khalid, Kamel, Radwa, Alhabsi, Abdulrahman, Tehseen, Muhammad, Hassan, Norhan, Butt, Haroon, Kababji, Ahad, Hamdan, Samir M., Mahfouz, Magdy M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 1
container_start_page 44
container_title Communications biology
container_volume 3
creator Ali, Zahir
Shami, Ashwag
Sedeek, Khalid
Kamel, Radwa
Alhabsi, Abdulrahman
Tehseen, Muhammad
Hassan, Norhan
Butt, Haroon
Kababji, Ahad
Hamdan, Samir M.
Mahfouz, Magdy M.
description Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE ( OsALS ) allele modification to generate herbicide-resistant rice ( Oryza sativa ) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 ( OsCCD7 ) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE ( OsHDT ) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species. Ali, Shami, Sedeek et al. generate a fusion between Cas9 and the VirD2 relaxase (Cas9-VirD2), which combines the functions of both proteins in producing targeted and specific double strand breaks and promoting homology-directed repair. They show the utility of their method by producing herbicide resistant rice.
doi_str_mv 10.1038/s42003-020-0768-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377661670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-7b246e7de6b383a205e28407251a181be132fa01c56cb0c59d406fb2dafda5f43</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EotWlD8AGWWLDJuC_2PEGCV0oIFViA2wtx5nkukrsYCcV3fLkdXpLKUisbM1859gzB6HnlLymhDdvsmCE8IowUhElm0o_QqeMa11xKdjjB_cTdJbzJSGEaq0lF0_RCadaCaH5Kfp1vmYfA449Xg6A9zZrDKGLYXUj2AzYhu62892n9wwnGO3Prdxb50e_2AUyPsQpjnG4rjqfwC3QFWy2PuE-JjyXki-CAUKcoHgPPgAkHwbsA07ewTP0pLdjhrO7c4e-nX_4uv9UXXz5-Hn_7qJyQpGlUi0TElQHsuUNt4zUwBpBFKuppQ1tgXLWW0JdLV1LXK07QWTfss72na17wXfo7dF3XtsJOgdhSXY0c_KTTdcmWm_-7gR_MEO8MlKrRpSd79CrO4MUf6yQFzP57GAcbYC4ZsO4EEw1itQFffkPehnXFMp4hVJKSirVZkiPlEsx5wT9_WcoMVvI5hiyKSGbLWSji-bFwynuFb8jLQA7Annetgzpz9P_d70BG--z8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377661670</pqid></control><display><type>article</type><title>Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Ali, Zahir ; Shami, Ashwag ; Sedeek, Khalid ; Kamel, Radwa ; Alhabsi, Abdulrahman ; Tehseen, Muhammad ; Hassan, Norhan ; Butt, Haroon ; Kababji, Ahad ; Hamdan, Samir M. ; Mahfouz, Magdy M.</creator><creatorcontrib>Ali, Zahir ; Shami, Ashwag ; Sedeek, Khalid ; Kamel, Radwa ; Alhabsi, Abdulrahman ; Tehseen, Muhammad ; Hassan, Norhan ; Butt, Haroon ; Kababji, Ahad ; Hamdan, Samir M. ; Mahfouz, Magdy M.</creatorcontrib><description>Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE ( OsALS ) allele modification to generate herbicide-resistant rice ( Oryza sativa ) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 ( OsCCD7 ) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE ( OsHDT ) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species. Ali, Shami, Sedeek et al. generate a fusion between Cas9 and the VirD2 relaxase (Cas9-VirD2), which combines the functions of both proteins in producing targeted and specific double strand breaks and promoting homology-directed repair. They show the utility of their method by producing herbicide resistant rice.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0768-9</identifier><identifier>PMID: 31974493</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/23 ; 45/29 ; 45/41 ; 45/44 ; 45/70 ; 45/77 ; 45/90 ; 631/337/4041/3196 ; 631/449/447/2311 ; Acetolactate synthase ; ATP-Binding Cassette Transporters - chemistry ; ATP-Binding Cassette Transporters - genetics ; Base Sequence ; Biology ; Biomedical and Life Sciences ; CRISPR ; CRISPR-Associated Protein 9 - chemistry ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; Dioxygenase ; DNA damage ; Endodeoxyribonucleases - chemistry ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Endonuclease ; Epitopes ; Gene Editing ; Genes, Plant ; Genetic Engineering - methods ; Genome, Plant ; Genomes ; Herbicide resistance ; Herbicide Resistance - genetics ; Herbicides ; Histone deacetylase ; Homology ; Life Sciences ; Oryza - drug effects ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; Phenotype ; Protein Binding ; Recombinant Fusion Proteins ; Recombinational DNA Repair ; Relaxase ; Rice</subject><ispartof>Communications biology, 2020-01, Vol.3 (1), p.44-44, Article 44</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-7b246e7de6b383a205e28407251a181be132fa01c56cb0c59d406fb2dafda5f43</citedby><cites>FETCH-LOGICAL-c470t-7b246e7de6b383a205e28407251a181be132fa01c56cb0c59d406fb2dafda5f43</cites><orcidid>0000-0003-0553-8419 ; 0000-0002-7814-8908 ; 0000-0001-5192-1852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978410/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978410/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31974493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Zahir</creatorcontrib><creatorcontrib>Shami, Ashwag</creatorcontrib><creatorcontrib>Sedeek, Khalid</creatorcontrib><creatorcontrib>Kamel, Radwa</creatorcontrib><creatorcontrib>Alhabsi, Abdulrahman</creatorcontrib><creatorcontrib>Tehseen, Muhammad</creatorcontrib><creatorcontrib>Hassan, Norhan</creatorcontrib><creatorcontrib>Butt, Haroon</creatorcontrib><creatorcontrib>Kababji, Ahad</creatorcontrib><creatorcontrib>Hamdan, Samir M.</creatorcontrib><creatorcontrib>Mahfouz, Magdy M.</creatorcontrib><title>Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE ( OsALS ) allele modification to generate herbicide-resistant rice ( Oryza sativa ) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 ( OsCCD7 ) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE ( OsHDT ) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species. Ali, Shami, Sedeek et al. generate a fusion between Cas9 and the VirD2 relaxase (Cas9-VirD2), which combines the functions of both proteins in producing targeted and specific double strand breaks and promoting homology-directed repair. They show the utility of their method by producing herbicide resistant rice.</description><subject>45/22</subject><subject>45/23</subject><subject>45/29</subject><subject>45/41</subject><subject>45/44</subject><subject>45/70</subject><subject>45/77</subject><subject>45/90</subject><subject>631/337/4041/3196</subject><subject>631/449/447/2311</subject><subject>Acetolactate synthase</subject><subject>ATP-Binding Cassette Transporters - chemistry</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>Base Sequence</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - chemistry</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>Dioxygenase</subject><subject>DNA damage</subject><subject>Endodeoxyribonucleases - chemistry</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endonuclease</subject><subject>Epitopes</subject><subject>Gene Editing</subject><subject>Genes, Plant</subject><subject>Genetic Engineering - methods</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Herbicide resistance</subject><subject>Herbicide Resistance - genetics</subject><subject>Herbicides</subject><subject>Histone deacetylase</subject><subject>Homology</subject><subject>Life Sciences</subject><subject>Oryza - drug effects</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>Phenotype</subject><subject>Protein Binding</subject><subject>Recombinant Fusion Proteins</subject><subject>Recombinational DNA Repair</subject><subject>Relaxase</subject><subject>Rice</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1TAQhS0EotWlD8AGWWLDJuC_2PEGCV0oIFViA2wtx5nkukrsYCcV3fLkdXpLKUisbM1859gzB6HnlLymhDdvsmCE8IowUhElm0o_QqeMa11xKdjjB_cTdJbzJSGEaq0lF0_RCadaCaH5Kfp1vmYfA449Xg6A9zZrDKGLYXUj2AzYhu62892n9wwnGO3Prdxb50e_2AUyPsQpjnG4rjqfwC3QFWy2PuE-JjyXki-CAUKcoHgPPgAkHwbsA07ewTP0pLdjhrO7c4e-nX_4uv9UXXz5-Hn_7qJyQpGlUi0TElQHsuUNt4zUwBpBFKuppQ1tgXLWW0JdLV1LXK07QWTfss72na17wXfo7dF3XtsJOgdhSXY0c_KTTdcmWm_-7gR_MEO8MlKrRpSd79CrO4MUf6yQFzP57GAcbYC4ZsO4EEw1itQFffkPehnXFMp4hVJKSirVZkiPlEsx5wT9_WcoMVvI5hiyKSGbLWSji-bFwynuFb8jLQA7Annetgzpz9P_d70BG--z8w</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Ali, Zahir</creator><creator>Shami, Ashwag</creator><creator>Sedeek, Khalid</creator><creator>Kamel, Radwa</creator><creator>Alhabsi, Abdulrahman</creator><creator>Tehseen, Muhammad</creator><creator>Hassan, Norhan</creator><creator>Butt, Haroon</creator><creator>Kababji, Ahad</creator><creator>Hamdan, Samir M.</creator><creator>Mahfouz, Magdy M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0553-8419</orcidid><orcidid>https://orcid.org/0000-0002-7814-8908</orcidid><orcidid>https://orcid.org/0000-0001-5192-1852</orcidid></search><sort><creationdate>20200123</creationdate><title>Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice</title><author>Ali, Zahir ; Shami, Ashwag ; Sedeek, Khalid ; Kamel, Radwa ; Alhabsi, Abdulrahman ; Tehseen, Muhammad ; Hassan, Norhan ; Butt, Haroon ; Kababji, Ahad ; Hamdan, Samir M. ; Mahfouz, Magdy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-7b246e7de6b383a205e28407251a181be132fa01c56cb0c59d406fb2dafda5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45/22</topic><topic>45/23</topic><topic>45/29</topic><topic>45/41</topic><topic>45/44</topic><topic>45/70</topic><topic>45/77</topic><topic>45/90</topic><topic>631/337/4041/3196</topic><topic>631/449/447/2311</topic><topic>Acetolactate synthase</topic><topic>ATP-Binding Cassette Transporters - chemistry</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>Base Sequence</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - chemistry</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>Dioxygenase</topic><topic>DNA damage</topic><topic>Endodeoxyribonucleases - chemistry</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endonuclease</topic><topic>Epitopes</topic><topic>Gene Editing</topic><topic>Genes, Plant</topic><topic>Genetic Engineering - methods</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Herbicide resistance</topic><topic>Herbicide Resistance - genetics</topic><topic>Herbicides</topic><topic>Histone deacetylase</topic><topic>Homology</topic><topic>Life Sciences</topic><topic>Oryza - drug effects</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>Phenotype</topic><topic>Protein Binding</topic><topic>Recombinant Fusion Proteins</topic><topic>Recombinational DNA Repair</topic><topic>Relaxase</topic><topic>Rice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Zahir</creatorcontrib><creatorcontrib>Shami, Ashwag</creatorcontrib><creatorcontrib>Sedeek, Khalid</creatorcontrib><creatorcontrib>Kamel, Radwa</creatorcontrib><creatorcontrib>Alhabsi, Abdulrahman</creatorcontrib><creatorcontrib>Tehseen, Muhammad</creatorcontrib><creatorcontrib>Hassan, Norhan</creatorcontrib><creatorcontrib>Butt, Haroon</creatorcontrib><creatorcontrib>Kababji, Ahad</creatorcontrib><creatorcontrib>Hamdan, Samir M.</creatorcontrib><creatorcontrib>Mahfouz, Magdy M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Zahir</au><au>Shami, Ashwag</au><au>Sedeek, Khalid</au><au>Kamel, Radwa</au><au>Alhabsi, Abdulrahman</au><au>Tehseen, Muhammad</au><au>Hassan, Norhan</au><au>Butt, Haroon</au><au>Kababji, Ahad</au><au>Hamdan, Samir M.</au><au>Mahfouz, Magdy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>44</spage><epage>44</epage><pages>44-44</pages><artnum>44</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE ( OsALS ) allele modification to generate herbicide-resistant rice ( Oryza sativa ) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 ( OsCCD7 ) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE ( OsHDT ) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species. Ali, Shami, Sedeek et al. generate a fusion between Cas9 and the VirD2 relaxase (Cas9-VirD2), which combines the functions of both proteins in producing targeted and specific double strand breaks and promoting homology-directed repair. They show the utility of their method by producing herbicide resistant rice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31974493</pmid><doi>10.1038/s42003-020-0768-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0553-8419</orcidid><orcidid>https://orcid.org/0000-0002-7814-8908</orcidid><orcidid>https://orcid.org/0000-0001-5192-1852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-01, Vol.3 (1), p.44-44, Article 44
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978410
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects 45/22
45/23
45/29
45/41
45/44
45/70
45/77
45/90
631/337/4041/3196
631/449/447/2311
Acetolactate synthase
ATP-Binding Cassette Transporters - chemistry
ATP-Binding Cassette Transporters - genetics
Base Sequence
Biology
Biomedical and Life Sciences
CRISPR
CRISPR-Associated Protein 9 - chemistry
CRISPR-Associated Protein 9 - genetics
CRISPR-Associated Protein 9 - metabolism
Dioxygenase
DNA damage
Endodeoxyribonucleases - chemistry
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Endonuclease
Epitopes
Gene Editing
Genes, Plant
Genetic Engineering - methods
Genome, Plant
Genomes
Herbicide resistance
Herbicide Resistance - genetics
Herbicides
Histone deacetylase
Homology
Life Sciences
Oryza - drug effects
Oryza - genetics
Oryza - metabolism
Oryza sativa
Phenotype
Protein Binding
Recombinant Fusion Proteins
Recombinational DNA Repair
Relaxase
Rice
title Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20the%20Cas9%20endonuclease%20and%20the%20VirD2%20relaxase%20facilitates%20homology-directed%20repair%20for%20precise%20genome%20engineering%20in%20rice&rft.jtitle=Communications%20biology&rft.au=Ali,%20Zahir&rft.date=2020-01-23&rft.volume=3&rft.issue=1&rft.spage=44&rft.epage=44&rft.pages=44-44&rft.artnum=44&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0768-9&rft_dat=%3Cproquest_pubme%3E2377661670%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377661670&rft_id=info:pmid/31974493&rfr_iscdi=true