Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice
Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we genera...
Gespeichert in:
Veröffentlicht in: | Communications biology 2020-01, Vol.3 (1), p.44-44, Article 44 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | Communications biology |
container_volume | 3 |
creator | Ali, Zahir Shami, Ashwag Sedeek, Khalid Kamel, Radwa Alhabsi, Abdulrahman Tehseen, Muhammad Hassan, Norhan Butt, Haroon Kababji, Ahad Hamdan, Samir M. Mahfouz, Magdy M. |
description | Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise
ACETOLACTATE SYNTHASE
(
OsALS
) allele modification to generate herbicide-resistant rice (
Oryza sativa
) plants,
CAROTENOID CLEAVAGE DIOXYGENASE-7
(
OsCCD7
) to engineer plant architecture, and generate in-frame fusions with the HA epitope at
HISTONE DEACETYLASE
(
OsHDT
) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species.
Ali, Shami, Sedeek et al. generate a fusion between Cas9 and the VirD2 relaxase (Cas9-VirD2), which combines the functions of both proteins in producing targeted and specific double strand breaks and promoting homology-directed repair. They show the utility of their method by producing herbicide resistant rice. |
doi_str_mv | 10.1038/s42003-020-0768-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377661670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-7b246e7de6b383a205e28407251a181be132fa01c56cb0c59d406fb2dafda5f43</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EotWlD8AGWWLDJuC_2PEGCV0oIFViA2wtx5nkukrsYCcV3fLkdXpLKUisbM1859gzB6HnlLymhDdvsmCE8IowUhElm0o_QqeMa11xKdjjB_cTdJbzJSGEaq0lF0_RCadaCaH5Kfp1vmYfA449Xg6A9zZrDKGLYXUj2AzYhu62892n9wwnGO3Prdxb50e_2AUyPsQpjnG4rjqfwC3QFWy2PuE-JjyXki-CAUKcoHgPPgAkHwbsA07ewTP0pLdjhrO7c4e-nX_4uv9UXXz5-Hn_7qJyQpGlUi0TElQHsuUNt4zUwBpBFKuppQ1tgXLWW0JdLV1LXK07QWTfss72na17wXfo7dF3XtsJOgdhSXY0c_KTTdcmWm_-7gR_MEO8MlKrRpSd79CrO4MUf6yQFzP57GAcbYC4ZsO4EEw1itQFffkPehnXFMp4hVJKSirVZkiPlEsx5wT9_WcoMVvI5hiyKSGbLWSji-bFwynuFb8jLQA7Annetgzpz9P_d70BG--z8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377661670</pqid></control><display><type>article</type><title>Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Ali, Zahir ; Shami, Ashwag ; Sedeek, Khalid ; Kamel, Radwa ; Alhabsi, Abdulrahman ; Tehseen, Muhammad ; Hassan, Norhan ; Butt, Haroon ; Kababji, Ahad ; Hamdan, Samir M. ; Mahfouz, Magdy M.</creator><creatorcontrib>Ali, Zahir ; Shami, Ashwag ; Sedeek, Khalid ; Kamel, Radwa ; Alhabsi, Abdulrahman ; Tehseen, Muhammad ; Hassan, Norhan ; Butt, Haroon ; Kababji, Ahad ; Hamdan, Samir M. ; Mahfouz, Magdy M.</creatorcontrib><description>Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise
ACETOLACTATE SYNTHASE
(
OsALS
) allele modification to generate herbicide-resistant rice (
Oryza sativa
) plants,
CAROTENOID CLEAVAGE DIOXYGENASE-7
(
OsCCD7
) to engineer plant architecture, and generate in-frame fusions with the HA epitope at
HISTONE DEACETYLASE
(
OsHDT
) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species.
Ali, Shami, Sedeek et al. generate a fusion between Cas9 and the VirD2 relaxase (Cas9-VirD2), which combines the functions of both proteins in producing targeted and specific double strand breaks and promoting homology-directed repair. They show the utility of their method by producing herbicide resistant rice.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0768-9</identifier><identifier>PMID: 31974493</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/23 ; 45/29 ; 45/41 ; 45/44 ; 45/70 ; 45/77 ; 45/90 ; 631/337/4041/3196 ; 631/449/447/2311 ; Acetolactate synthase ; ATP-Binding Cassette Transporters - chemistry ; ATP-Binding Cassette Transporters - genetics ; Base Sequence ; Biology ; Biomedical and Life Sciences ; CRISPR ; CRISPR-Associated Protein 9 - chemistry ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; Dioxygenase ; DNA damage ; Endodeoxyribonucleases - chemistry ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Endonuclease ; Epitopes ; Gene Editing ; Genes, Plant ; Genetic Engineering - methods ; Genome, Plant ; Genomes ; Herbicide resistance ; Herbicide Resistance - genetics ; Herbicides ; Histone deacetylase ; Homology ; Life Sciences ; Oryza - drug effects ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; Phenotype ; Protein Binding ; Recombinant Fusion Proteins ; Recombinational DNA Repair ; Relaxase ; Rice</subject><ispartof>Communications biology, 2020-01, Vol.3 (1), p.44-44, Article 44</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-7b246e7de6b383a205e28407251a181be132fa01c56cb0c59d406fb2dafda5f43</citedby><cites>FETCH-LOGICAL-c470t-7b246e7de6b383a205e28407251a181be132fa01c56cb0c59d406fb2dafda5f43</cites><orcidid>0000-0003-0553-8419 ; 0000-0002-7814-8908 ; 0000-0001-5192-1852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978410/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978410/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31974493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Zahir</creatorcontrib><creatorcontrib>Shami, Ashwag</creatorcontrib><creatorcontrib>Sedeek, Khalid</creatorcontrib><creatorcontrib>Kamel, Radwa</creatorcontrib><creatorcontrib>Alhabsi, Abdulrahman</creatorcontrib><creatorcontrib>Tehseen, Muhammad</creatorcontrib><creatorcontrib>Hassan, Norhan</creatorcontrib><creatorcontrib>Butt, Haroon</creatorcontrib><creatorcontrib>Kababji, Ahad</creatorcontrib><creatorcontrib>Hamdan, Samir M.</creatorcontrib><creatorcontrib>Mahfouz, Magdy M.</creatorcontrib><title>Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise
ACETOLACTATE SYNTHASE
(
OsALS
) allele modification to generate herbicide-resistant rice (
Oryza sativa
) plants,
CAROTENOID CLEAVAGE DIOXYGENASE-7
(
OsCCD7
) to engineer plant architecture, and generate in-frame fusions with the HA epitope at
HISTONE DEACETYLASE
(
OsHDT
) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species.
Ali, Shami, Sedeek et al. generate a fusion between Cas9 and the VirD2 relaxase (Cas9-VirD2), which combines the functions of both proteins in producing targeted and specific double strand breaks and promoting homology-directed repair. They show the utility of their method by producing herbicide resistant rice.</description><subject>45/22</subject><subject>45/23</subject><subject>45/29</subject><subject>45/41</subject><subject>45/44</subject><subject>45/70</subject><subject>45/77</subject><subject>45/90</subject><subject>631/337/4041/3196</subject><subject>631/449/447/2311</subject><subject>Acetolactate synthase</subject><subject>ATP-Binding Cassette Transporters - chemistry</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>Base Sequence</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - chemistry</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>Dioxygenase</subject><subject>DNA damage</subject><subject>Endodeoxyribonucleases - chemistry</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endonuclease</subject><subject>Epitopes</subject><subject>Gene Editing</subject><subject>Genes, Plant</subject><subject>Genetic Engineering - methods</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Herbicide resistance</subject><subject>Herbicide Resistance - genetics</subject><subject>Herbicides</subject><subject>Histone deacetylase</subject><subject>Homology</subject><subject>Life Sciences</subject><subject>Oryza - drug effects</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>Phenotype</subject><subject>Protein Binding</subject><subject>Recombinant Fusion Proteins</subject><subject>Recombinational DNA Repair</subject><subject>Relaxase</subject><subject>Rice</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1TAQhS0EotWlD8AGWWLDJuC_2PEGCV0oIFViA2wtx5nkukrsYCcV3fLkdXpLKUisbM1859gzB6HnlLymhDdvsmCE8IowUhElm0o_QqeMa11xKdjjB_cTdJbzJSGEaq0lF0_RCadaCaH5Kfp1vmYfA449Xg6A9zZrDKGLYXUj2AzYhu62892n9wwnGO3Prdxb50e_2AUyPsQpjnG4rjqfwC3QFWy2PuE-JjyXki-CAUKcoHgPPgAkHwbsA07ewTP0pLdjhrO7c4e-nX_4uv9UXXz5-Hn_7qJyQpGlUi0TElQHsuUNt4zUwBpBFKuppQ1tgXLWW0JdLV1LXK07QWTfss72na17wXfo7dF3XtsJOgdhSXY0c_KTTdcmWm_-7gR_MEO8MlKrRpSd79CrO4MUf6yQFzP57GAcbYC4ZsO4EEw1itQFffkPehnXFMp4hVJKSirVZkiPlEsx5wT9_WcoMVvI5hiyKSGbLWSji-bFwynuFb8jLQA7Annetgzpz9P_d70BG--z8w</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Ali, Zahir</creator><creator>Shami, Ashwag</creator><creator>Sedeek, Khalid</creator><creator>Kamel, Radwa</creator><creator>Alhabsi, Abdulrahman</creator><creator>Tehseen, Muhammad</creator><creator>Hassan, Norhan</creator><creator>Butt, Haroon</creator><creator>Kababji, Ahad</creator><creator>Hamdan, Samir M.</creator><creator>Mahfouz, Magdy M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0553-8419</orcidid><orcidid>https://orcid.org/0000-0002-7814-8908</orcidid><orcidid>https://orcid.org/0000-0001-5192-1852</orcidid></search><sort><creationdate>20200123</creationdate><title>Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice</title><author>Ali, Zahir ; Shami, Ashwag ; Sedeek, Khalid ; Kamel, Radwa ; Alhabsi, Abdulrahman ; Tehseen, Muhammad ; Hassan, Norhan ; Butt, Haroon ; Kababji, Ahad ; Hamdan, Samir M. ; Mahfouz, Magdy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-7b246e7de6b383a205e28407251a181be132fa01c56cb0c59d406fb2dafda5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45/22</topic><topic>45/23</topic><topic>45/29</topic><topic>45/41</topic><topic>45/44</topic><topic>45/70</topic><topic>45/77</topic><topic>45/90</topic><topic>631/337/4041/3196</topic><topic>631/449/447/2311</topic><topic>Acetolactate synthase</topic><topic>ATP-Binding Cassette Transporters - chemistry</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>Base Sequence</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - chemistry</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>Dioxygenase</topic><topic>DNA damage</topic><topic>Endodeoxyribonucleases - chemistry</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endonuclease</topic><topic>Epitopes</topic><topic>Gene Editing</topic><topic>Genes, Plant</topic><topic>Genetic Engineering - methods</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Herbicide resistance</topic><topic>Herbicide Resistance - genetics</topic><topic>Herbicides</topic><topic>Histone deacetylase</topic><topic>Homology</topic><topic>Life Sciences</topic><topic>Oryza - drug effects</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>Phenotype</topic><topic>Protein Binding</topic><topic>Recombinant Fusion Proteins</topic><topic>Recombinational DNA Repair</topic><topic>Relaxase</topic><topic>Rice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Zahir</creatorcontrib><creatorcontrib>Shami, Ashwag</creatorcontrib><creatorcontrib>Sedeek, Khalid</creatorcontrib><creatorcontrib>Kamel, Radwa</creatorcontrib><creatorcontrib>Alhabsi, Abdulrahman</creatorcontrib><creatorcontrib>Tehseen, Muhammad</creatorcontrib><creatorcontrib>Hassan, Norhan</creatorcontrib><creatorcontrib>Butt, Haroon</creatorcontrib><creatorcontrib>Kababji, Ahad</creatorcontrib><creatorcontrib>Hamdan, Samir M.</creatorcontrib><creatorcontrib>Mahfouz, Magdy M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Zahir</au><au>Shami, Ashwag</au><au>Sedeek, Khalid</au><au>Kamel, Radwa</au><au>Alhabsi, Abdulrahman</au><au>Tehseen, Muhammad</au><au>Hassan, Norhan</au><au>Butt, Haroon</au><au>Kababji, Ahad</au><au>Hamdan, Samir M.</au><au>Mahfouz, Magdy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>44</spage><epage>44</epage><pages>44-44</pages><artnum>44</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise
ACETOLACTATE SYNTHASE
(
OsALS
) allele modification to generate herbicide-resistant rice (
Oryza sativa
) plants,
CAROTENOID CLEAVAGE DIOXYGENASE-7
(
OsCCD7
) to engineer plant architecture, and generate in-frame fusions with the HA epitope at
HISTONE DEACETYLASE
(
OsHDT
) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species.
Ali, Shami, Sedeek et al. generate a fusion between Cas9 and the VirD2 relaxase (Cas9-VirD2), which combines the functions of both proteins in producing targeted and specific double strand breaks and promoting homology-directed repair. They show the utility of their method by producing herbicide resistant rice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31974493</pmid><doi>10.1038/s42003-020-0768-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0553-8419</orcidid><orcidid>https://orcid.org/0000-0002-7814-8908</orcidid><orcidid>https://orcid.org/0000-0001-5192-1852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2020-01, Vol.3 (1), p.44-44, Article 44 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978410 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | 45/22 45/23 45/29 45/41 45/44 45/70 45/77 45/90 631/337/4041/3196 631/449/447/2311 Acetolactate synthase ATP-Binding Cassette Transporters - chemistry ATP-Binding Cassette Transporters - genetics Base Sequence Biology Biomedical and Life Sciences CRISPR CRISPR-Associated Protein 9 - chemistry CRISPR-Associated Protein 9 - genetics CRISPR-Associated Protein 9 - metabolism Dioxygenase DNA damage Endodeoxyribonucleases - chemistry Endodeoxyribonucleases - genetics Endodeoxyribonucleases - metabolism Endonuclease Epitopes Gene Editing Genes, Plant Genetic Engineering - methods Genome, Plant Genomes Herbicide resistance Herbicide Resistance - genetics Herbicides Histone deacetylase Homology Life Sciences Oryza - drug effects Oryza - genetics Oryza - metabolism Oryza sativa Phenotype Protein Binding Recombinant Fusion Proteins Recombinational DNA Repair Relaxase Rice |
title | Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20the%20Cas9%20endonuclease%20and%20the%20VirD2%20relaxase%20facilitates%20homology-directed%20repair%20for%20precise%20genome%20engineering%20in%20rice&rft.jtitle=Communications%20biology&rft.au=Ali,%20Zahir&rft.date=2020-01-23&rft.volume=3&rft.issue=1&rft.spage=44&rft.epage=44&rft.pages=44-44&rft.artnum=44&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0768-9&rft_dat=%3Cproquest_pubme%3E2377661670%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377661670&rft_id=info:pmid/31974493&rfr_iscdi=true |