Semantic Segmentation of the Choroid in Swept Source Optical Coherence Tomography Images for Volumetrics
The choroid is a complex vascular tissue that is covered with the retinal pigment epithelium. Ultra high speed swept source optical coherence tomography (SS-OCT) provides us with high-resolution cube scan images of the choroid. Robust segmentation techniques are required to reconstruct choroidal vol...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-01, Vol.10 (1), p.1088-1088, Article 1088 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1088 |
---|---|
container_issue | 1 |
container_start_page | 1088 |
container_title | Scientific reports |
container_volume | 10 |
creator | Tsuji, Shingo Sekiryu, Tetsuju Sugano, Yukinori Ojima, Akira Kasai, Akihito Okamoto, Masahiro Eifuku, Satoshi |
description | The choroid is a complex vascular tissue that is covered with the retinal pigment epithelium. Ultra high speed swept source optical coherence tomography (SS-OCT) provides us with high-resolution cube scan images of the choroid. Robust segmentation techniques are required to reconstruct choroidal volume using SS-OCT images. For automated segmentation, the delineation of the choroidal-scleral (C-S) boundary is key to accurate segmentation. Low contrast of the boundary, scleral canals formed by the vessel and the nerve, and the posterior stromal layer, may cause segmentation errors. Semantic segmentation is one of the applications of deep learning used to classify the parts of images related to the meanings of the subjects. We applied semantic segmentation to choroidal segmentation and measured the volume of the choroid. The measurement results were validated through comparison with those of other segmentation methods. As a result, semantic segmentation was able to segment the C-S boundary and choroidal volume adequately. |
doi_str_mv | 10.1038/s41598-020-57788-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344205079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-14cdd2437c76444ba09bdc950482124ce137b0ed6c5bd5654c093789333c111c3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EolXpH2CBLLFhE_AzjjdI6IpHpUpd3MLWcpy5iavEDnZS1P56XFJKYYE3tjzfnPHxQeglJW8p4c27LKjUTUUYqaRSTVPdPkHHjAhZMc7Y00fnI3Sa8xUpSzItqH6OjjjVSohGHaNhD5MNi3d4D_0EYbGLjwHHA14GwLshpug77APe_4B5wfu4Jgf4Yi4ddsS7OECCUG4u4xT7ZOfhBp9NtoeMDzHhb3FcJ1iSd_kFenawY4bT-_0Eff308XL3pTq_-Hy2-3BeOSnIUlHhuo4JrpyqhRCtJbrtnJZENIwy4YBy1RLoaifbTtZSOKK5ajTn3FFKHT9B7zfdeW0n6FyxlOxo5uQnm25MtN78XQl-MH28NrVWDReiCLy5F0jx-wp5MZPPDsbRBohrNqxATIla3aGv_0Gvyv-EYm-jiCRKF4ptlEsx5wSHh8dQYu6yNFuWpmRpfmVpbkvTq8c2Hlp-J1cAvgG5lEIP6c_s_8j-BHhJqzo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344205079</pqid></control><display><type>article</type><title>Semantic Segmentation of the Choroid in Swept Source Optical Coherence Tomography Images for Volumetrics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tsuji, Shingo ; Sekiryu, Tetsuju ; Sugano, Yukinori ; Ojima, Akira ; Kasai, Akihito ; Okamoto, Masahiro ; Eifuku, Satoshi</creator><creatorcontrib>Tsuji, Shingo ; Sekiryu, Tetsuju ; Sugano, Yukinori ; Ojima, Akira ; Kasai, Akihito ; Okamoto, Masahiro ; Eifuku, Satoshi</creatorcontrib><description>The choroid is a complex vascular tissue that is covered with the retinal pigment epithelium. Ultra high speed swept source optical coherence tomography (SS-OCT) provides us with high-resolution cube scan images of the choroid. Robust segmentation techniques are required to reconstruct choroidal volume using SS-OCT images. For automated segmentation, the delineation of the choroidal-scleral (C-S) boundary is key to accurate segmentation. Low contrast of the boundary, scleral canals formed by the vessel and the nerve, and the posterior stromal layer, may cause segmentation errors. Semantic segmentation is one of the applications of deep learning used to classify the parts of images related to the meanings of the subjects. We applied semantic segmentation to choroidal segmentation and measured the volume of the choroid. The measurement results were validated through comparison with those of other segmentation methods. As a result, semantic segmentation was able to segment the C-S boundary and choroidal volume adequately.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-57788-z</identifier><identifier>PMID: 31974487</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/53/2421 ; 692/700/1421/1846 ; Adult ; Choroid - diagnostic imaging ; Cone-Beam Computed Tomography - methods ; Deep Learning ; Epithelium ; Female ; Humanities and Social Sciences ; Humans ; Image processing ; Male ; multidisciplinary ; Retina ; Retinal pigment epithelium ; Retinal Pigment Epithelium - diagnostic imaging ; Science ; Science (multidisciplinary) ; Segmentation ; Semantics ; Tomography ; Tomography, Optical Coherence - methods ; Young Adult</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.1088-1088, Article 1088</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-14cdd2437c76444ba09bdc950482124ce137b0ed6c5bd5654c093789333c111c3</citedby><cites>FETCH-LOGICAL-c540t-14cdd2437c76444ba09bdc950482124ce137b0ed6c5bd5654c093789333c111c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978344/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978344/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31974487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuji, Shingo</creatorcontrib><creatorcontrib>Sekiryu, Tetsuju</creatorcontrib><creatorcontrib>Sugano, Yukinori</creatorcontrib><creatorcontrib>Ojima, Akira</creatorcontrib><creatorcontrib>Kasai, Akihito</creatorcontrib><creatorcontrib>Okamoto, Masahiro</creatorcontrib><creatorcontrib>Eifuku, Satoshi</creatorcontrib><title>Semantic Segmentation of the Choroid in Swept Source Optical Coherence Tomography Images for Volumetrics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The choroid is a complex vascular tissue that is covered with the retinal pigment epithelium. Ultra high speed swept source optical coherence tomography (SS-OCT) provides us with high-resolution cube scan images of the choroid. Robust segmentation techniques are required to reconstruct choroidal volume using SS-OCT images. For automated segmentation, the delineation of the choroidal-scleral (C-S) boundary is key to accurate segmentation. Low contrast of the boundary, scleral canals formed by the vessel and the nerve, and the posterior stromal layer, may cause segmentation errors. Semantic segmentation is one of the applications of deep learning used to classify the parts of images related to the meanings of the subjects. We applied semantic segmentation to choroidal segmentation and measured the volume of the choroid. The measurement results were validated through comparison with those of other segmentation methods. As a result, semantic segmentation was able to segment the C-S boundary and choroidal volume adequately.</description><subject>692/53/2421</subject><subject>692/700/1421/1846</subject><subject>Adult</subject><subject>Choroid - diagnostic imaging</subject><subject>Cone-Beam Computed Tomography - methods</subject><subject>Deep Learning</subject><subject>Epithelium</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Male</subject><subject>multidisciplinary</subject><subject>Retina</subject><subject>Retinal pigment epithelium</subject><subject>Retinal Pigment Epithelium - diagnostic imaging</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1TAQhS0EolXpH2CBLLFhE_AzjjdI6IpHpUpd3MLWcpy5iavEDnZS1P56XFJKYYE3tjzfnPHxQeglJW8p4c27LKjUTUUYqaRSTVPdPkHHjAhZMc7Y00fnI3Sa8xUpSzItqH6OjjjVSohGHaNhD5MNi3d4D_0EYbGLjwHHA14GwLshpug77APe_4B5wfu4Jgf4Yi4ddsS7OECCUG4u4xT7ZOfhBp9NtoeMDzHhb3FcJ1iSd_kFenawY4bT-_0Eff308XL3pTq_-Hy2-3BeOSnIUlHhuo4JrpyqhRCtJbrtnJZENIwy4YBy1RLoaifbTtZSOKK5ajTn3FFKHT9B7zfdeW0n6FyxlOxo5uQnm25MtN78XQl-MH28NrVWDReiCLy5F0jx-wp5MZPPDsbRBohrNqxATIla3aGv_0Gvyv-EYm-jiCRKF4ptlEsx5wSHh8dQYu6yNFuWpmRpfmVpbkvTq8c2Hlp-J1cAvgG5lEIP6c_s_8j-BHhJqzo</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Tsuji, Shingo</creator><creator>Sekiryu, Tetsuju</creator><creator>Sugano, Yukinori</creator><creator>Ojima, Akira</creator><creator>Kasai, Akihito</creator><creator>Okamoto, Masahiro</creator><creator>Eifuku, Satoshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200123</creationdate><title>Semantic Segmentation of the Choroid in Swept Source Optical Coherence Tomography Images for Volumetrics</title><author>Tsuji, Shingo ; Sekiryu, Tetsuju ; Sugano, Yukinori ; Ojima, Akira ; Kasai, Akihito ; Okamoto, Masahiro ; Eifuku, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-14cdd2437c76444ba09bdc950482124ce137b0ed6c5bd5654c093789333c111c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/53/2421</topic><topic>692/700/1421/1846</topic><topic>Adult</topic><topic>Choroid - diagnostic imaging</topic><topic>Cone-Beam Computed Tomography - methods</topic><topic>Deep Learning</topic><topic>Epithelium</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Male</topic><topic>multidisciplinary</topic><topic>Retina</topic><topic>Retinal pigment epithelium</topic><topic>Retinal Pigment Epithelium - diagnostic imaging</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuji, Shingo</creatorcontrib><creatorcontrib>Sekiryu, Tetsuju</creatorcontrib><creatorcontrib>Sugano, Yukinori</creatorcontrib><creatorcontrib>Ojima, Akira</creatorcontrib><creatorcontrib>Kasai, Akihito</creatorcontrib><creatorcontrib>Okamoto, Masahiro</creatorcontrib><creatorcontrib>Eifuku, Satoshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuji, Shingo</au><au>Sekiryu, Tetsuju</au><au>Sugano, Yukinori</au><au>Ojima, Akira</au><au>Kasai, Akihito</au><au>Okamoto, Masahiro</au><au>Eifuku, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Segmentation of the Choroid in Swept Source Optical Coherence Tomography Images for Volumetrics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>1088</spage><epage>1088</epage><pages>1088-1088</pages><artnum>1088</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The choroid is a complex vascular tissue that is covered with the retinal pigment epithelium. Ultra high speed swept source optical coherence tomography (SS-OCT) provides us with high-resolution cube scan images of the choroid. Robust segmentation techniques are required to reconstruct choroidal volume using SS-OCT images. For automated segmentation, the delineation of the choroidal-scleral (C-S) boundary is key to accurate segmentation. Low contrast of the boundary, scleral canals formed by the vessel and the nerve, and the posterior stromal layer, may cause segmentation errors. Semantic segmentation is one of the applications of deep learning used to classify the parts of images related to the meanings of the subjects. We applied semantic segmentation to choroidal segmentation and measured the volume of the choroid. The measurement results were validated through comparison with those of other segmentation methods. As a result, semantic segmentation was able to segment the C-S boundary and choroidal volume adequately.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31974487</pmid><doi>10.1038/s41598-020-57788-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-01, Vol.10 (1), p.1088-1088, Article 1088 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978344 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 692/53/2421 692/700/1421/1846 Adult Choroid - diagnostic imaging Cone-Beam Computed Tomography - methods Deep Learning Epithelium Female Humanities and Social Sciences Humans Image processing Male multidisciplinary Retina Retinal pigment epithelium Retinal Pigment Epithelium - diagnostic imaging Science Science (multidisciplinary) Segmentation Semantics Tomography Tomography, Optical Coherence - methods Young Adult |
title | Semantic Segmentation of the Choroid in Swept Source Optical Coherence Tomography Images for Volumetrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Segmentation%20of%20the%20Choroid%20in%20Swept%20Source%20Optical%20Coherence%20Tomography%20Images%20for%20Volumetrics&rft.jtitle=Scientific%20reports&rft.au=Tsuji,%20Shingo&rft.date=2020-01-23&rft.volume=10&rft.issue=1&rft.spage=1088&rft.epage=1088&rft.pages=1088-1088&rft.artnum=1088&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-57788-z&rft_dat=%3Cproquest_pubme%3E2344205079%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344205079&rft_id=info:pmid/31974487&rfr_iscdi=true |