Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy
Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or in...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2020-01, Vol.11 (1), p.50-50, Article 50 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 50 |
container_title | Cell death & disease |
container_volume | 11 |
creator | Das, Mrinmoy Karnam, Anupama Stephen-Victor, Emmanuel Gilardin, Laurent Bhatt, Bharat Kumar Sharma, Varun Rambabu, Naresh Patil, Veerupaxagouda Lecerf, Maxime Käsermann, Fabian Bruneval, Patrick Narayanaswamy Balaji, Kithiganahalli Benveniste, Olivier Kaveri, Srini V. Bayry, Jagadeesh |
description | Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented. Therefore, we explored if IVIG immunotherapy exerts therapeutic benefits via induction of autophagy in the immune cells. Here we show that IVIG induces autophagy in peripheral blood mononuclear cells (PBMCs). Further dissection of this process revealed that IVIG-induced autophagy is restricted to inflammatory cells like monocytes, dendritic cells, and M1 macrophages but not in cells associated with Th2 immune response like M2 macrophages. IVIG induces autophagy by activating AMP-dependent protein kinase, beclin-1, class III phosphoinositide 3-kinase and p38 mitogen-activated protein kinase and by inhibiting mammalian target of rapamycin. Mechanistically, IVIG-induced autophagy is F(ab′)
2
-dependent but sialylation independent, and requires endocytosis of IgG by innate cells. Inhibition of autophagy compromised the ability of IVIG to suppress the inflammatory cytokines in innate immune cells. Moreover, IVIG therapy in inflammatory myopathies such as dermatomyositis, antisynthetase syndrome and immune-mediated necrotizing myopathy induced autophagy in PBMCs and reduced inflammatory cytokines in the circulation, thus validating the translational importance of these results. Our data provide insight on how circulating normal immunoglobulins maintain immune homeostasis and explain in part the mechanism by which IVIG therapy benefits patients with autoimmune and inflammatory diseases. |
doi_str_mv | 10.1038/s41419-020-2249-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344210288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-23c1d57511d3673d089e941ace44748c3d44690267fa3857491184fa5cfc72823</originalsourceid><addsrcrecordid>eNp1kk1rFTEUhgdRbKn9AW4k4MaFo_k4M0k2QilqCxfc6DrkZjJzUzLJmMxcmH_fXKbWWjCbBM7zno83p6reEvyJYCY-ZyBAZI0prikFWa8vqnOKgdQghHz55H1WXeZ8h8thDNOmfV2dMSI5AMbn1Xob5qSPNsQlIzeOS4iDj_vFu4BG2zk924x0mF3tQu_1OOo5phXZvrdmLoqAJpvcdLBJe7T3MXZojCGGxXirEzLW-4z2awG7xbgwIL3McTroYX1Tveq1z_by4b6ofn37-vP6pt79-H57fbWrTYP5XFNmSNfwhpCOtZx1WEgrgWhjATgIwzqAVmLa8l4z0XCQhAjodWN6w6mg7KL6suWdln2ZyNjTwF5NyY06rSpqp_6NBHdQQzyqVnLBWFMSfNwSHJ7Jbq52yoVs06iKrw0DgCMp-IeHein-Xmye1ejyyQcdbDFZ0cJRDpywgr5_ht7FJYXixkYRTIUoFNkok2LOyfaPTRCsTqugtlUoTWB1WgW1Fs27p0M_Kv58fAHoBuQSCoNNf0v_P-s9jS_BFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344210288</pqid></control><display><type>article</type><title>Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Das, Mrinmoy ; Karnam, Anupama ; Stephen-Victor, Emmanuel ; Gilardin, Laurent ; Bhatt, Bharat ; Kumar Sharma, Varun ; Rambabu, Naresh ; Patil, Veerupaxagouda ; Lecerf, Maxime ; Käsermann, Fabian ; Bruneval, Patrick ; Narayanaswamy Balaji, Kithiganahalli ; Benveniste, Olivier ; Kaveri, Srini V. ; Bayry, Jagadeesh</creator><creatorcontrib>Das, Mrinmoy ; Karnam, Anupama ; Stephen-Victor, Emmanuel ; Gilardin, Laurent ; Bhatt, Bharat ; Kumar Sharma, Varun ; Rambabu, Naresh ; Patil, Veerupaxagouda ; Lecerf, Maxime ; Käsermann, Fabian ; Bruneval, Patrick ; Narayanaswamy Balaji, Kithiganahalli ; Benveniste, Olivier ; Kaveri, Srini V. ; Bayry, Jagadeesh</creatorcontrib><description>Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented. Therefore, we explored if IVIG immunotherapy exerts therapeutic benefits via induction of autophagy in the immune cells. Here we show that IVIG induces autophagy in peripheral blood mononuclear cells (PBMCs). Further dissection of this process revealed that IVIG-induced autophagy is restricted to inflammatory cells like monocytes, dendritic cells, and M1 macrophages but not in cells associated with Th2 immune response like M2 macrophages. IVIG induces autophagy by activating AMP-dependent protein kinase, beclin-1, class III phosphoinositide 3-kinase and p38 mitogen-activated protein kinase and by inhibiting mammalian target of rapamycin. Mechanistically, IVIG-induced autophagy is F(ab′)
2
-dependent but sialylation independent, and requires endocytosis of IgG by innate cells. Inhibition of autophagy compromised the ability of IVIG to suppress the inflammatory cytokines in innate immune cells. Moreover, IVIG therapy in inflammatory myopathies such as dermatomyositis, antisynthetase syndrome and immune-mediated necrotizing myopathy induced autophagy in PBMCs and reduced inflammatory cytokines in the circulation, thus validating the translational importance of these results. Our data provide insight on how circulating normal immunoglobulins maintain immune homeostasis and explain in part the mechanism by which IVIG therapy benefits patients with autoimmune and inflammatory diseases.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-020-2249-y</identifier><identifier>PMID: 31974400</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/21 ; 13/95 ; 14/19 ; 14/28 ; 14/34 ; 14/63 ; 631/250/251 ; 631/250/38 ; 692/308/575 ; 82/29 ; 82/80 ; Adenylate Kinase - metabolism ; AMP ; Anti-Inflammatory Agents - pharmacology ; Antibodies ; Autophagy ; Autophagy - drug effects ; Beclin-1 - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell Line ; Cytokines ; Dendritic cells ; Dendritic Cells - drug effects ; Dendritic Cells - metabolism ; Dendritic Cells - ultrastructure ; Dermatomyositis ; Endocytosis ; Endocytosis - drug effects ; Homeostasis ; Humans ; Immunity, Innate - drug effects ; Immunoglobulin Fab Fragments - metabolism ; Immunoglobulin G ; Immunoglobulins ; Immunoglobulins, Intravenous - pharmacology ; Immunology ; Immunotherapy ; Inflammatory diseases ; Intravenous administration ; Kinases ; Leukocytes (mononuclear) ; Leukocytes, Mononuclear - drug effects ; Leukocytes, Mononuclear - metabolism ; Life Sciences ; Lipopolysaccharides - pharmacology ; Lymphocytes T ; Macrophages ; Macrophages - drug effects ; Macrophages - metabolism ; MAP kinase ; Monocytes ; Monocytes - drug effects ; Monocytes - metabolism ; Myopathy ; Organelles - drug effects ; Organelles - metabolism ; Organelles - ultrastructure ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peripheral blood mononuclear cells ; Phagocytosis ; Phosphatidylinositol 3-Kinase - metabolism ; Phosphorylation - drug effects ; Protein kinase ; Rapamycin ; Tissue Donors ; TOR protein ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Cell death & disease, 2020-01, Vol.11 (1), p.50-50, Article 50</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-23c1d57511d3673d089e941ace44748c3d44690267fa3857491184fa5cfc72823</citedby><cites>FETCH-LOGICAL-c507t-23c1d57511d3673d089e941ace44748c3d44690267fa3857491184fa5cfc72823</cites><orcidid>0000-0003-0498-9808 ; 0000-0002-0837-4053 ; 0000-0001-9212-0859 ; 0000-0002-1167-5797 ; 0000-0002-1477-2162 ; 0000-0002-2350-2914 ; 0000-0001-5049-7017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31974400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02553444$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Mrinmoy</creatorcontrib><creatorcontrib>Karnam, Anupama</creatorcontrib><creatorcontrib>Stephen-Victor, Emmanuel</creatorcontrib><creatorcontrib>Gilardin, Laurent</creatorcontrib><creatorcontrib>Bhatt, Bharat</creatorcontrib><creatorcontrib>Kumar Sharma, Varun</creatorcontrib><creatorcontrib>Rambabu, Naresh</creatorcontrib><creatorcontrib>Patil, Veerupaxagouda</creatorcontrib><creatorcontrib>Lecerf, Maxime</creatorcontrib><creatorcontrib>Käsermann, Fabian</creatorcontrib><creatorcontrib>Bruneval, Patrick</creatorcontrib><creatorcontrib>Narayanaswamy Balaji, Kithiganahalli</creatorcontrib><creatorcontrib>Benveniste, Olivier</creatorcontrib><creatorcontrib>Kaveri, Srini V.</creatorcontrib><creatorcontrib>Bayry, Jagadeesh</creatorcontrib><title>Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy</title><title>Cell death & disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented. Therefore, we explored if IVIG immunotherapy exerts therapeutic benefits via induction of autophagy in the immune cells. Here we show that IVIG induces autophagy in peripheral blood mononuclear cells (PBMCs). Further dissection of this process revealed that IVIG-induced autophagy is restricted to inflammatory cells like monocytes, dendritic cells, and M1 macrophages but not in cells associated with Th2 immune response like M2 macrophages. IVIG induces autophagy by activating AMP-dependent protein kinase, beclin-1, class III phosphoinositide 3-kinase and p38 mitogen-activated protein kinase and by inhibiting mammalian target of rapamycin. Mechanistically, IVIG-induced autophagy is F(ab′)
2
-dependent but sialylation independent, and requires endocytosis of IgG by innate cells. Inhibition of autophagy compromised the ability of IVIG to suppress the inflammatory cytokines in innate immune cells. Moreover, IVIG therapy in inflammatory myopathies such as dermatomyositis, antisynthetase syndrome and immune-mediated necrotizing myopathy induced autophagy in PBMCs and reduced inflammatory cytokines in the circulation, thus validating the translational importance of these results. Our data provide insight on how circulating normal immunoglobulins maintain immune homeostasis and explain in part the mechanism by which IVIG therapy benefits patients with autoimmune and inflammatory diseases.</description><subject>13/1</subject><subject>13/106</subject><subject>13/21</subject><subject>13/95</subject><subject>14/19</subject><subject>14/28</subject><subject>14/34</subject><subject>14/63</subject><subject>631/250/251</subject><subject>631/250/38</subject><subject>692/308/575</subject><subject>82/29</subject><subject>82/80</subject><subject>Adenylate Kinase - metabolism</subject><subject>AMP</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Antibodies</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Beclin-1 - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Line</subject><subject>Cytokines</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - metabolism</subject><subject>Dendritic Cells - ultrastructure</subject><subject>Dermatomyositis</subject><subject>Endocytosis</subject><subject>Endocytosis - drug effects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunity, Innate - drug effects</subject><subject>Immunoglobulin Fab Fragments - metabolism</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulins</subject><subject>Immunoglobulins, Intravenous - pharmacology</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Inflammatory diseases</subject><subject>Intravenous administration</subject><subject>Kinases</subject><subject>Leukocytes (mononuclear)</subject><subject>Leukocytes, Mononuclear - drug effects</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>MAP kinase</subject><subject>Monocytes</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - metabolism</subject><subject>Myopathy</subject><subject>Organelles - drug effects</subject><subject>Organelles - metabolism</subject><subject>Organelles - ultrastructure</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peripheral blood mononuclear cells</subject><subject>Phagocytosis</subject><subject>Phosphatidylinositol 3-Kinase - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Protein kinase</subject><subject>Rapamycin</subject><subject>Tissue Donors</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kk1rFTEUhgdRbKn9AW4k4MaFo_k4M0k2QilqCxfc6DrkZjJzUzLJmMxcmH_fXKbWWjCbBM7zno83p6reEvyJYCY-ZyBAZI0prikFWa8vqnOKgdQghHz55H1WXeZ8h8thDNOmfV2dMSI5AMbn1Xob5qSPNsQlIzeOS4iDj_vFu4BG2zk924x0mF3tQu_1OOo5phXZvrdmLoqAJpvcdLBJe7T3MXZojCGGxXirEzLW-4z2awG7xbgwIL3McTroYX1Tveq1z_by4b6ofn37-vP6pt79-H57fbWrTYP5XFNmSNfwhpCOtZx1WEgrgWhjATgIwzqAVmLa8l4z0XCQhAjodWN6w6mg7KL6suWdln2ZyNjTwF5NyY06rSpqp_6NBHdQQzyqVnLBWFMSfNwSHJ7Jbq52yoVs06iKrw0DgCMp-IeHein-Xmye1ejyyQcdbDFZ0cJRDpywgr5_ht7FJYXixkYRTIUoFNkok2LOyfaPTRCsTqugtlUoTWB1WgW1Fs27p0M_Kv58fAHoBuQSCoNNf0v_P-s9jS_BFw</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Das, Mrinmoy</creator><creator>Karnam, Anupama</creator><creator>Stephen-Victor, Emmanuel</creator><creator>Gilardin, Laurent</creator><creator>Bhatt, Bharat</creator><creator>Kumar Sharma, Varun</creator><creator>Rambabu, Naresh</creator><creator>Patil, Veerupaxagouda</creator><creator>Lecerf, Maxime</creator><creator>Käsermann, Fabian</creator><creator>Bruneval, Patrick</creator><creator>Narayanaswamy Balaji, Kithiganahalli</creator><creator>Benveniste, Olivier</creator><creator>Kaveri, Srini V.</creator><creator>Bayry, Jagadeesh</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0498-9808</orcidid><orcidid>https://orcid.org/0000-0002-0837-4053</orcidid><orcidid>https://orcid.org/0000-0001-9212-0859</orcidid><orcidid>https://orcid.org/0000-0002-1167-5797</orcidid><orcidid>https://orcid.org/0000-0002-1477-2162</orcidid><orcidid>https://orcid.org/0000-0002-2350-2914</orcidid><orcidid>https://orcid.org/0000-0001-5049-7017</orcidid></search><sort><creationdate>20200123</creationdate><title>Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy</title><author>Das, Mrinmoy ; Karnam, Anupama ; Stephen-Victor, Emmanuel ; Gilardin, Laurent ; Bhatt, Bharat ; Kumar Sharma, Varun ; Rambabu, Naresh ; Patil, Veerupaxagouda ; Lecerf, Maxime ; Käsermann, Fabian ; Bruneval, Patrick ; Narayanaswamy Balaji, Kithiganahalli ; Benveniste, Olivier ; Kaveri, Srini V. ; Bayry, Jagadeesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-23c1d57511d3673d089e941ace44748c3d44690267fa3857491184fa5cfc72823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/21</topic><topic>13/95</topic><topic>14/19</topic><topic>14/28</topic><topic>14/34</topic><topic>14/63</topic><topic>631/250/251</topic><topic>631/250/38</topic><topic>692/308/575</topic><topic>82/29</topic><topic>82/80</topic><topic>Adenylate Kinase - metabolism</topic><topic>AMP</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Antibodies</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Beclin-1 - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Line</topic><topic>Cytokines</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - metabolism</topic><topic>Dendritic Cells - ultrastructure</topic><topic>Dermatomyositis</topic><topic>Endocytosis</topic><topic>Endocytosis - drug effects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunity, Innate - drug effects</topic><topic>Immunoglobulin Fab Fragments - metabolism</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulins</topic><topic>Immunoglobulins, Intravenous - pharmacology</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Inflammatory diseases</topic><topic>Intravenous administration</topic><topic>Kinases</topic><topic>Leukocytes (mononuclear)</topic><topic>Leukocytes, Mononuclear - drug effects</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>MAP kinase</topic><topic>Monocytes</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - metabolism</topic><topic>Myopathy</topic><topic>Organelles - drug effects</topic><topic>Organelles - metabolism</topic><topic>Organelles - ultrastructure</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peripheral blood mononuclear cells</topic><topic>Phagocytosis</topic><topic>Phosphatidylinositol 3-Kinase - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Protein kinase</topic><topic>Rapamycin</topic><topic>Tissue Donors</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Mrinmoy</creatorcontrib><creatorcontrib>Karnam, Anupama</creatorcontrib><creatorcontrib>Stephen-Victor, Emmanuel</creatorcontrib><creatorcontrib>Gilardin, Laurent</creatorcontrib><creatorcontrib>Bhatt, Bharat</creatorcontrib><creatorcontrib>Kumar Sharma, Varun</creatorcontrib><creatorcontrib>Rambabu, Naresh</creatorcontrib><creatorcontrib>Patil, Veerupaxagouda</creatorcontrib><creatorcontrib>Lecerf, Maxime</creatorcontrib><creatorcontrib>Käsermann, Fabian</creatorcontrib><creatorcontrib>Bruneval, Patrick</creatorcontrib><creatorcontrib>Narayanaswamy Balaji, Kithiganahalli</creatorcontrib><creatorcontrib>Benveniste, Olivier</creatorcontrib><creatorcontrib>Kaveri, Srini V.</creatorcontrib><creatorcontrib>Bayry, Jagadeesh</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death & disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Mrinmoy</au><au>Karnam, Anupama</au><au>Stephen-Victor, Emmanuel</au><au>Gilardin, Laurent</au><au>Bhatt, Bharat</au><au>Kumar Sharma, Varun</au><au>Rambabu, Naresh</au><au>Patil, Veerupaxagouda</au><au>Lecerf, Maxime</au><au>Käsermann, Fabian</au><au>Bruneval, Patrick</au><au>Narayanaswamy Balaji, Kithiganahalli</au><au>Benveniste, Olivier</au><au>Kaveri, Srini V.</au><au>Bayry, Jagadeesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy</atitle><jtitle>Cell death & disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>50</spage><epage>50</epage><pages>50-50</pages><artnum>50</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented. Therefore, we explored if IVIG immunotherapy exerts therapeutic benefits via induction of autophagy in the immune cells. Here we show that IVIG induces autophagy in peripheral blood mononuclear cells (PBMCs). Further dissection of this process revealed that IVIG-induced autophagy is restricted to inflammatory cells like monocytes, dendritic cells, and M1 macrophages but not in cells associated with Th2 immune response like M2 macrophages. IVIG induces autophagy by activating AMP-dependent protein kinase, beclin-1, class III phosphoinositide 3-kinase and p38 mitogen-activated protein kinase and by inhibiting mammalian target of rapamycin. Mechanistically, IVIG-induced autophagy is F(ab′)
2
-dependent but sialylation independent, and requires endocytosis of IgG by innate cells. Inhibition of autophagy compromised the ability of IVIG to suppress the inflammatory cytokines in innate immune cells. Moreover, IVIG therapy in inflammatory myopathies such as dermatomyositis, antisynthetase syndrome and immune-mediated necrotizing myopathy induced autophagy in PBMCs and reduced inflammatory cytokines in the circulation, thus validating the translational importance of these results. Our data provide insight on how circulating normal immunoglobulins maintain immune homeostasis and explain in part the mechanism by which IVIG therapy benefits patients with autoimmune and inflammatory diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31974400</pmid><doi>10.1038/s41419-020-2249-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0498-9808</orcidid><orcidid>https://orcid.org/0000-0002-0837-4053</orcidid><orcidid>https://orcid.org/0000-0001-9212-0859</orcidid><orcidid>https://orcid.org/0000-0002-1167-5797</orcidid><orcidid>https://orcid.org/0000-0002-1477-2162</orcidid><orcidid>https://orcid.org/0000-0002-2350-2914</orcidid><orcidid>https://orcid.org/0000-0001-5049-7017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-4889 |
ispartof | Cell death & disease, 2020-01, Vol.11 (1), p.50-50, Article 50 |
issn | 2041-4889 2041-4889 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978335 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 13/1 13/106 13/21 13/95 14/19 14/28 14/34 14/63 631/250/251 631/250/38 692/308/575 82/29 82/80 Adenylate Kinase - metabolism AMP Anti-Inflammatory Agents - pharmacology Antibodies Autophagy Autophagy - drug effects Beclin-1 - metabolism Biochemistry Biomedical and Life Sciences Cell Biology Cell Culture Cell Line Cytokines Dendritic cells Dendritic Cells - drug effects Dendritic Cells - metabolism Dendritic Cells - ultrastructure Dermatomyositis Endocytosis Endocytosis - drug effects Homeostasis Humans Immunity, Innate - drug effects Immunoglobulin Fab Fragments - metabolism Immunoglobulin G Immunoglobulins Immunoglobulins, Intravenous - pharmacology Immunology Immunotherapy Inflammatory diseases Intravenous administration Kinases Leukocytes (mononuclear) Leukocytes, Mononuclear - drug effects Leukocytes, Mononuclear - metabolism Life Sciences Lipopolysaccharides - pharmacology Lymphocytes T Macrophages Macrophages - drug effects Macrophages - metabolism MAP kinase Monocytes Monocytes - drug effects Monocytes - metabolism Myopathy Organelles - drug effects Organelles - metabolism Organelles - ultrastructure p38 Mitogen-Activated Protein Kinases - metabolism Peripheral blood mononuclear cells Phagocytosis Phosphatidylinositol 3-Kinase - metabolism Phosphorylation - drug effects Protein kinase Rapamycin Tissue Donors TOR protein TOR Serine-Threonine Kinases - metabolism |
title | Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intravenous%20immunoglobulin%20mediates%20anti-inflammatory%20effects%20in%20peripheral%20blood%20mononuclear%20cells%20by%20inducing%20autophagy&rft.jtitle=Cell%20death%20&%20disease&rft.au=Das,%20Mrinmoy&rft.date=2020-01-23&rft.volume=11&rft.issue=1&rft.spage=50&rft.epage=50&rft.pages=50-50&rft.artnum=50&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-020-2249-y&rft_dat=%3Cproquest_pubme%3E2344210288%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344210288&rft_id=info:pmid/31974400&rfr_iscdi=true |