Predicting Geographical Human Risk of West Nile Virus — Saskatchewan, 2003 and 2007

Objectives: To detail the use of a model to predict areas of low, medium, and high risk of West Nile virus (WNV) in humans in both 2003 and 2007 in the province of Saskatchewan. To identify consistent high-risk areas from year to year as well as important environmental variables within those high-ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of public health 2009-09, Vol.100 (5), p.344-348
Hauptverfasser: Epp, Tasha Y., Waldner, Cheryl L., Berke, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 5
container_start_page 344
container_title Canadian journal of public health
container_volume 100
creator Epp, Tasha Y.
Waldner, Cheryl L.
Berke, Olaf
description Objectives: To detail the use of a model to predict areas of low, medium, and high risk of West Nile virus (WNV) in humans in both 2003 and 2007 in the province of Saskatchewan. To identify consistent high-risk areas from year to year as well as important environmental variables within those high-risk areas. Methods: The number of laboratory-confirmed WNV individuals was obtained from Saskatchewan Health by rural municipality. The population at risk was obtained from Statistics Canada by rural municipality. Climate and habitat variables were incorporated into a discriminant analysis model with the production of risk maps as an end product. Results: The discriminant analysis models had testing classification accuracies of 67% in 2003 and 44% in 2007. Climate and habitat variables remained important in all models while some habitat variables were less important in 2007. Risk maps from historically trained 2007 model revealed a southwest to northeast decreasing trend of risk. Conclusion: The models could be useful for indicating areas of high risk on a year-to-year basis or based on historical data. High-risk regions are characterized by less rainfall in June and July followed by higher temperatures in July and August with less vegetation and water coverage than low-risk regions. Objectifs : Expliquer l'utilisation d'un modèle de prévision des secteurs à risque modéré, moyen et élevé pour les humains de contracter le virus du Nil occidental (VNO) en 2003 et en 2007 dans la province de la Saskatchewan. Déterminer les secteurs à risque uniformément élevé d'une année à l'autre, ainsi que les variables environnementales importantes dans les secteurs à risque élevé. Méthode : Nous avons obtenu auprès du ministère de la Santé de la Saskatchewan le nombre de cas séropositifs pour le VNO confirmés en laboratoire, par municipalité rurale. Statistique Canada nous a fourni le nombre de personnes à risque par municipalité rurale. Des variables climatiques et d'habitat ont été intégrées dans un modèle d'analyse discriminante afin de produire des cartes du risque. Résultats : Les modèles d'analyse discriminante étaient exacts à 67 % en 2003 et à 44 % en 2007. Les variables climatiques et d'habitat sont demeurées importantes dans tous les modèles, mais certaines variables d'habitat avaient moins d'importance en 2007. Les cartes du risque produites à partir du modèle chronologique de 2007 montrent que le risque a eu tendance à diminuer en allant du Sud-Ouest vers le Nord-Est
doi_str_mv 10.1007/BF03405266
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6973701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A211236538</galeid><jstor_id>41995288</jstor_id><sourcerecordid>A211236538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-b0c0dfc59cb5e17aec517564fb12276e98cd2100fb48b9f4f1d93895951cbf713</originalsourceid><addsrcrecordid>eNpt0stu1DAUBuAIgehQ2LAHWZWoxCXFlySON5VKRS9SVRClsLQcx854mrGndsJlx0PwhDwJHmU0M5FGWSSWv_zOOTlJ8hzBIwQhff_hDJIM5rgoHiQTxDBMaUaLh8kEQlimGS7IXvIkhFlcEkLJ42QPMcYySrJJcvvZq9rIztgGnCvXeLGYGilacNHPhQVfTLgDToPvKnTg2rQKfDO-D-Dfn7_gRoQ70cmp-insO4BjOBC2Xj7Qp8kjLdqgnq3u-8nt2cevpxfp1afzy9OTq1QWBerSCkpYa5kzWeUKUaFkjmheZLpCGNNCsVLWOJaoq6ysmM40qhkpWc5yJCtNEdlPjofcRV_NVS2V7bxo-cKbufC_uROGj3esmfLG_eAFo4TCZcDBKsC7-z4WyWeu9zZ-M8dkWQnNyojSATWiVdxY7WKWbJRVMdJZpWNf-AlGCJMiJ-UmdOTlwtzzbXS0A8WrVnMjd6a-Hr0QTad-dY3oQ-CXN9dje7hlp0q03TS4tu-Ms2EM3wxQeheCV3rdOwT5crj4Zrgifrnd7Q1dTVMEr1ZAhDhD2gsrTVg7jBGNP41F93ZwIW7ZRvlN13ce-2LQs9A5v07L4rE5LkvyH8656Ik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232007748</pqid></control><display><type>article</type><title>Predicting Geographical Human Risk of West Nile Virus — Saskatchewan, 2003 and 2007</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Epp, Tasha Y. ; Waldner, Cheryl L. ; Berke, Olaf</creator><creatorcontrib>Epp, Tasha Y. ; Waldner, Cheryl L. ; Berke, Olaf</creatorcontrib><description>Objectives: To detail the use of a model to predict areas of low, medium, and high risk of West Nile virus (WNV) in humans in both 2003 and 2007 in the province of Saskatchewan. To identify consistent high-risk areas from year to year as well as important environmental variables within those high-risk areas. Methods: The number of laboratory-confirmed WNV individuals was obtained from Saskatchewan Health by rural municipality. The population at risk was obtained from Statistics Canada by rural municipality. Climate and habitat variables were incorporated into a discriminant analysis model with the production of risk maps as an end product. Results: The discriminant analysis models had testing classification accuracies of 67% in 2003 and 44% in 2007. Climate and habitat variables remained important in all models while some habitat variables were less important in 2007. Risk maps from historically trained 2007 model revealed a southwest to northeast decreasing trend of risk. Conclusion: The models could be useful for indicating areas of high risk on a year-to-year basis or based on historical data. High-risk regions are characterized by less rainfall in June and July followed by higher temperatures in July and August with less vegetation and water coverage than low-risk regions. Objectifs : Expliquer l'utilisation d'un modèle de prévision des secteurs à risque modéré, moyen et élevé pour les humains de contracter le virus du Nil occidental (VNO) en 2003 et en 2007 dans la province de la Saskatchewan. Déterminer les secteurs à risque uniformément élevé d'une année à l'autre, ainsi que les variables environnementales importantes dans les secteurs à risque élevé. Méthode : Nous avons obtenu auprès du ministère de la Santé de la Saskatchewan le nombre de cas séropositifs pour le VNO confirmés en laboratoire, par municipalité rurale. Statistique Canada nous a fourni le nombre de personnes à risque par municipalité rurale. Des variables climatiques et d'habitat ont été intégrées dans un modèle d'analyse discriminante afin de produire des cartes du risque. Résultats : Les modèles d'analyse discriminante étaient exacts à 67 % en 2003 et à 44 % en 2007. Les variables climatiques et d'habitat sont demeurées importantes dans tous les modèles, mais certaines variables d'habitat avaient moins d'importance en 2007. Les cartes du risque produites à partir du modèle chronologique de 2007 montrent que le risque a eu tendance à diminuer en allant du Sud-Ouest vers le Nord-Est. Conclusion : Ces modèles pourraient être utiles pour indiquer les secteurs à risque élevé d'une année à l'autre ou selon des données historiques. Les régions à risque élevé se caractérisent par une pluviosité relativement faible en juin et en juillet suivie de hausses de la température en juillet et en août, avec une couverture végétale et hydrique plus limitée que dans les régions à risque modéré.</description><identifier>ISSN: 0008-4263</identifier><identifier>EISSN: 1920-7476</identifier><identifier>DOI: 10.1007/BF03405266</identifier><identifier>PMID: 19994734</identifier><identifier>CODEN: CJPEA4</identifier><language>eng</language><publisher>Cham: Canadian Public Health Association</publisher><subject>2003 AD ; 2007 AD ; Accuracy ; Animals ; Arboviral encephalitis ; Arboviroses ; Behavior ; Biological and medical sciences ; Classification ; Data sampling ; Datasets ; Discriminant analysis ; Disease ; Disease models ; Disease Outbreaks ; Disease risk ; Environmental conditions ; Geography ; Health surveillance ; Human viral diseases ; Humans ; Infections ; Infectious diseases ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Miscellaneous ; Modeling ; Models, Theoretical ; Mosquitoes ; Multivariate Analysis ; Population Surveillance ; Principal components analysis ; Public Health ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; QUANTITATIVE RESEARCH ; Remote sensing ; Risk Assessment ; Risk Factors ; Saskatchewan - epidemiology ; Social aspects ; Temperature ; Tropical viral diseases ; Viral diseases ; Viruses ; West Nile fever ; West Nile Fever - epidemiology ; West Nile Fever - transmission ; West Nile virus ; Wetlands ; Zoonoses - epidemiology</subject><ispartof>Canadian journal of public health, 2009-09, Vol.100 (5), p.344-348</ispartof><rights>Canadian Public Health Association, 2009 © Association canadienne de santé publique, 2009</rights><rights>The Canadian Public Health Association 2009</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2009 Springer</rights><rights>Copyright Canadian Public Health Association Sep/Oct 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-b0c0dfc59cb5e17aec517564fb12276e98cd2100fb48b9f4f1d93895951cbf713</citedby><cites>FETCH-LOGICAL-c661t-b0c0dfc59cb5e17aec517564fb12276e98cd2100fb48b9f4f1d93895951cbf713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41995288$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41995288$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,41488,42557,51319,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22177139$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19994734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Epp, Tasha Y.</creatorcontrib><creatorcontrib>Waldner, Cheryl L.</creatorcontrib><creatorcontrib>Berke, Olaf</creatorcontrib><title>Predicting Geographical Human Risk of West Nile Virus — Saskatchewan, 2003 and 2007</title><title>Canadian journal of public health</title><addtitle>Can J Public Health</addtitle><addtitle>Can J Public Health</addtitle><description>Objectives: To detail the use of a model to predict areas of low, medium, and high risk of West Nile virus (WNV) in humans in both 2003 and 2007 in the province of Saskatchewan. To identify consistent high-risk areas from year to year as well as important environmental variables within those high-risk areas. Methods: The number of laboratory-confirmed WNV individuals was obtained from Saskatchewan Health by rural municipality. The population at risk was obtained from Statistics Canada by rural municipality. Climate and habitat variables were incorporated into a discriminant analysis model with the production of risk maps as an end product. Results: The discriminant analysis models had testing classification accuracies of 67% in 2003 and 44% in 2007. Climate and habitat variables remained important in all models while some habitat variables were less important in 2007. Risk maps from historically trained 2007 model revealed a southwest to northeast decreasing trend of risk. Conclusion: The models could be useful for indicating areas of high risk on a year-to-year basis or based on historical data. High-risk regions are characterized by less rainfall in June and July followed by higher temperatures in July and August with less vegetation and water coverage than low-risk regions. Objectifs : Expliquer l'utilisation d'un modèle de prévision des secteurs à risque modéré, moyen et élevé pour les humains de contracter le virus du Nil occidental (VNO) en 2003 et en 2007 dans la province de la Saskatchewan. Déterminer les secteurs à risque uniformément élevé d'une année à l'autre, ainsi que les variables environnementales importantes dans les secteurs à risque élevé. Méthode : Nous avons obtenu auprès du ministère de la Santé de la Saskatchewan le nombre de cas séropositifs pour le VNO confirmés en laboratoire, par municipalité rurale. Statistique Canada nous a fourni le nombre de personnes à risque par municipalité rurale. Des variables climatiques et d'habitat ont été intégrées dans un modèle d'analyse discriminante afin de produire des cartes du risque. Résultats : Les modèles d'analyse discriminante étaient exacts à 67 % en 2003 et à 44 % en 2007. Les variables climatiques et d'habitat sont demeurées importantes dans tous les modèles, mais certaines variables d'habitat avaient moins d'importance en 2007. Les cartes du risque produites à partir du modèle chronologique de 2007 montrent que le risque a eu tendance à diminuer en allant du Sud-Ouest vers le Nord-Est. Conclusion : Ces modèles pourraient être utiles pour indiquer les secteurs à risque élevé d'une année à l'autre ou selon des données historiques. Les régions à risque élevé se caractérisent par une pluviosité relativement faible en juin et en juillet suivie de hausses de la température en juillet et en août, avec une couverture végétale et hydrique plus limitée que dans les régions à risque modéré.</description><subject>2003 AD</subject><subject>2007 AD</subject><subject>Accuracy</subject><subject>Animals</subject><subject>Arboviral encephalitis</subject><subject>Arboviroses</subject><subject>Behavior</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Data sampling</subject><subject>Datasets</subject><subject>Discriminant analysis</subject><subject>Disease</subject><subject>Disease models</subject><subject>Disease Outbreaks</subject><subject>Disease risk</subject><subject>Environmental conditions</subject><subject>Geography</subject><subject>Health surveillance</subject><subject>Human viral diseases</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Miscellaneous</subject><subject>Modeling</subject><subject>Models, Theoretical</subject><subject>Mosquitoes</subject><subject>Multivariate Analysis</subject><subject>Population Surveillance</subject><subject>Principal components analysis</subject><subject>Public Health</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>QUANTITATIVE RESEARCH</subject><subject>Remote sensing</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Saskatchewan - epidemiology</subject><subject>Social aspects</subject><subject>Temperature</subject><subject>Tropical viral diseases</subject><subject>Viral diseases</subject><subject>Viruses</subject><subject>West Nile fever</subject><subject>West Nile Fever - epidemiology</subject><subject>West Nile Fever - transmission</subject><subject>West Nile virus</subject><subject>Wetlands</subject><subject>Zoonoses - epidemiology</subject><issn>0008-4263</issn><issn>1920-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0stu1DAUBuAIgehQ2LAHWZWoxCXFlySON5VKRS9SVRClsLQcx854mrGndsJlx0PwhDwJHmU0M5FGWSSWv_zOOTlJ8hzBIwQhff_hDJIM5rgoHiQTxDBMaUaLh8kEQlimGS7IXvIkhFlcEkLJ42QPMcYySrJJcvvZq9rIztgGnCvXeLGYGilacNHPhQVfTLgDToPvKnTg2rQKfDO-D-Dfn7_gRoQ70cmp-insO4BjOBC2Xj7Qp8kjLdqgnq3u-8nt2cevpxfp1afzy9OTq1QWBerSCkpYa5kzWeUKUaFkjmheZLpCGNNCsVLWOJaoq6ysmM40qhkpWc5yJCtNEdlPjofcRV_NVS2V7bxo-cKbufC_uROGj3esmfLG_eAFo4TCZcDBKsC7-z4WyWeu9zZ-M8dkWQnNyojSATWiVdxY7WKWbJRVMdJZpWNf-AlGCJMiJ-UmdOTlwtzzbXS0A8WrVnMjd6a-Hr0QTad-dY3oQ-CXN9dje7hlp0q03TS4tu-Ms2EM3wxQeheCV3rdOwT5crj4Zrgifrnd7Q1dTVMEr1ZAhDhD2gsrTVg7jBGNP41F93ZwIW7ZRvlN13ce-2LQs9A5v07L4rE5LkvyH8656Ik</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Epp, Tasha Y.</creator><creator>Waldner, Cheryl L.</creator><creator>Berke, Olaf</creator><general>Canadian Public Health Association</general><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>4S-</scope><scope>4U-</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7T2</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88J</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>KC-</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2L</scope><scope>M2O</scope><scope>M2R</scope><scope>M3G</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20090901</creationdate><title>Predicting Geographical Human Risk of West Nile Virus — Saskatchewan, 2003 and 2007</title><author>Epp, Tasha Y. ; Waldner, Cheryl L. ; Berke, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-b0c0dfc59cb5e17aec517564fb12276e98cd2100fb48b9f4f1d93895951cbf713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>2003 AD</topic><topic>2007 AD</topic><topic>Accuracy</topic><topic>Animals</topic><topic>Arboviral encephalitis</topic><topic>Arboviroses</topic><topic>Behavior</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Data sampling</topic><topic>Datasets</topic><topic>Discriminant analysis</topic><topic>Disease</topic><topic>Disease models</topic><topic>Disease Outbreaks</topic><topic>Disease risk</topic><topic>Environmental conditions</topic><topic>Geography</topic><topic>Health surveillance</topic><topic>Human viral diseases</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Miscellaneous</topic><topic>Modeling</topic><topic>Models, Theoretical</topic><topic>Mosquitoes</topic><topic>Multivariate Analysis</topic><topic>Population Surveillance</topic><topic>Principal components analysis</topic><topic>Public Health</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>QUANTITATIVE RESEARCH</topic><topic>Remote sensing</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Saskatchewan - epidemiology</topic><topic>Social aspects</topic><topic>Temperature</topic><topic>Tropical viral diseases</topic><topic>Viral diseases</topic><topic>Viruses</topic><topic>West Nile fever</topic><topic>West Nile Fever - epidemiology</topic><topic>West Nile Fever - transmission</topic><topic>West Nile virus</topic><topic>Wetlands</topic><topic>Zoonoses - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epp, Tasha Y.</creatorcontrib><creatorcontrib>Waldner, Cheryl L.</creatorcontrib><creatorcontrib>Berke, Olaf</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>BPIR.com Limited</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>British Nursing Database</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Politics Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Politics Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Political Science Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>CBCA Reference &amp; Current Events</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Canadian journal of public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epp, Tasha Y.</au><au>Waldner, Cheryl L.</au><au>Berke, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Geographical Human Risk of West Nile Virus — Saskatchewan, 2003 and 2007</atitle><jtitle>Canadian journal of public health</jtitle><stitle>Can J Public Health</stitle><addtitle>Can J Public Health</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>100</volume><issue>5</issue><spage>344</spage><epage>348</epage><pages>344-348</pages><issn>0008-4263</issn><eissn>1920-7476</eissn><coden>CJPEA4</coden><abstract>Objectives: To detail the use of a model to predict areas of low, medium, and high risk of West Nile virus (WNV) in humans in both 2003 and 2007 in the province of Saskatchewan. To identify consistent high-risk areas from year to year as well as important environmental variables within those high-risk areas. Methods: The number of laboratory-confirmed WNV individuals was obtained from Saskatchewan Health by rural municipality. The population at risk was obtained from Statistics Canada by rural municipality. Climate and habitat variables were incorporated into a discriminant analysis model with the production of risk maps as an end product. Results: The discriminant analysis models had testing classification accuracies of 67% in 2003 and 44% in 2007. Climate and habitat variables remained important in all models while some habitat variables were less important in 2007. Risk maps from historically trained 2007 model revealed a southwest to northeast decreasing trend of risk. Conclusion: The models could be useful for indicating areas of high risk on a year-to-year basis or based on historical data. High-risk regions are characterized by less rainfall in June and July followed by higher temperatures in July and August with less vegetation and water coverage than low-risk regions. Objectifs : Expliquer l'utilisation d'un modèle de prévision des secteurs à risque modéré, moyen et élevé pour les humains de contracter le virus du Nil occidental (VNO) en 2003 et en 2007 dans la province de la Saskatchewan. Déterminer les secteurs à risque uniformément élevé d'une année à l'autre, ainsi que les variables environnementales importantes dans les secteurs à risque élevé. Méthode : Nous avons obtenu auprès du ministère de la Santé de la Saskatchewan le nombre de cas séropositifs pour le VNO confirmés en laboratoire, par municipalité rurale. Statistique Canada nous a fourni le nombre de personnes à risque par municipalité rurale. Des variables climatiques et d'habitat ont été intégrées dans un modèle d'analyse discriminante afin de produire des cartes du risque. Résultats : Les modèles d'analyse discriminante étaient exacts à 67 % en 2003 et à 44 % en 2007. Les variables climatiques et d'habitat sont demeurées importantes dans tous les modèles, mais certaines variables d'habitat avaient moins d'importance en 2007. Les cartes du risque produites à partir du modèle chronologique de 2007 montrent que le risque a eu tendance à diminuer en allant du Sud-Ouest vers le Nord-Est. Conclusion : Ces modèles pourraient être utiles pour indiquer les secteurs à risque élevé d'une année à l'autre ou selon des données historiques. Les régions à risque élevé se caractérisent par une pluviosité relativement faible en juin et en juillet suivie de hausses de la température en juillet et en août, avec une couverture végétale et hydrique plus limitée que dans les régions à risque modéré.</abstract><cop>Cham</cop><pub>Canadian Public Health Association</pub><pmid>19994734</pmid><doi>10.1007/BF03405266</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-4263
ispartof Canadian journal of public health, 2009-09, Vol.100 (5), p.344-348
issn 0008-4263
1920-7476
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6973701
source MEDLINE; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects 2003 AD
2007 AD
Accuracy
Animals
Arboviral encephalitis
Arboviroses
Behavior
Biological and medical sciences
Classification
Data sampling
Datasets
Discriminant analysis
Disease
Disease models
Disease Outbreaks
Disease risk
Environmental conditions
Geography
Health surveillance
Human viral diseases
Humans
Infections
Infectious diseases
Medical sciences
Medicine
Medicine & Public Health
Miscellaneous
Modeling
Models, Theoretical
Mosquitoes
Multivariate Analysis
Population Surveillance
Principal components analysis
Public Health
Public health. Hygiene
Public health. Hygiene-occupational medicine
QUANTITATIVE RESEARCH
Remote sensing
Risk Assessment
Risk Factors
Saskatchewan - epidemiology
Social aspects
Temperature
Tropical viral diseases
Viral diseases
Viruses
West Nile fever
West Nile Fever - epidemiology
West Nile Fever - transmission
West Nile virus
Wetlands
Zoonoses - epidemiology
title Predicting Geographical Human Risk of West Nile Virus — Saskatchewan, 2003 and 2007
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Geographical%20Human%20Risk%20of%20West%20Nile%20Virus%20%E2%80%94%20Saskatchewan,%202003%20and%202007&rft.jtitle=Canadian%20journal%20of%20public%20health&rft.au=Epp,%20Tasha%20Y.&rft.date=2009-09-01&rft.volume=100&rft.issue=5&rft.spage=344&rft.epage=348&rft.pages=344-348&rft.issn=0008-4263&rft.eissn=1920-7476&rft.coden=CJPEA4&rft_id=info:doi/10.1007/BF03405266&rft_dat=%3Cgale_pubme%3EA211236538%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232007748&rft_id=info:pmid/19994734&rft_galeid=A211236538&rft_jstor_id=41995288&rfr_iscdi=true