Preferential Inhibition of JAK1 Relative to JAK3 by Upadacitinib: Exposure‐Response Analyses of Ex Vivo Data From 2 Phase 1 Clinical Trials and Comparison to Tofacitinib

Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor being developed for treatment of rheumatoid arthritis. This study characterizes the relationships between upadacitinib exposure and interleukin (IL)‐6–induced signal transducer and activator of transcription proteins 3 (STAT3) phosphorylatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical pharmacology 2020-02, Vol.60 (2), p.188-197
Hauptverfasser: Mohamed, Mohamed‐Eslam F., Beck, Denise, Camp, Heidi S., Othman, Ahmed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 2
container_start_page 188
container_title Journal of clinical pharmacology
container_volume 60
creator Mohamed, Mohamed‐Eslam F.
Beck, Denise
Camp, Heidi S.
Othman, Ahmed A.
description Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor being developed for treatment of rheumatoid arthritis. This study characterizes the relationships between upadacitinib exposure and interleukin (IL)‐6–induced signal transducer and activator of transcription proteins 3 (STAT3) phosphorylation (pSTAT3) and IL‐7–induced STAT5 phosphorylation (pSTAT5) in the ex vivo setting as measures for JAK1 and JAK1/JAK3 inhibition, respectively, with comparison to tofacitinib. Drug plasma concentrations and ex vivo IL‐6–induced pSTAT3 and IL‐7–induced pSTAT5 in blood from subjects evaluated in 2 phase 1 studies who received immediate‐release 1 mg to 48 mg upadacitinib, 5 mg twice daily (BID) tofacitinib, or placebo were determined. Exposure‐response models were developed, and the effects of different upadacitinib doses on ex vivo biomarker responses were simulated and compared to tofacitinib. Upadacitinib (and tofacitinib) reversibly inhibited IL‐6–induced pSTAT3 and IL‐7–induced pSTAT5 in a concentration‐dependent manner. Model‐estimated values of 50% of the maximum effect were 60.7 nM for upadacitinib and 119 nM for tofacitinib for IL‐6–induced pSTAT3 inhibition, and 125 nM for upadacitinib and 79.1 nM for tofacitinib for IL‐7–induced pSTAT5 inhibition. Tofacitinib 5 mg BID is estimated to have a similar magnitude of effect on IL‐6–induced pSTAT3 to ∼3 mg BID of upadacitinib (immediate‐release formulation), whereas a 4‐fold higher dose of upadacitinib (∼12 mg BID), is estimated to show a similar magnitude of inhibition on IL‐7–induced pSTAT5 as tofacitinb 5 mg BID. This study confirms that in humans, upadacitinib has greater selectivity for JAK1 vs JAK3 relative to the rheumatoid arthritis approved dose of tofacitinib, and results from these analyses informed the selection of upadacitinib IR doses evaluated in phase 2.
doi_str_mv 10.1002/jcph.1513
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6973126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334088751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4813-886785e520f41d4d7e87fc18734a47cba754d178b22ba51e8c0b5840a0c3ddf3</originalsourceid><addsrcrecordid>eNp1kdFu0zAUhi0EYqVwwQsgS1xxkc2OndrjAqkKHduYRDUVbi3HOSEuaRzspFvveATeg7fiSXBoN4EEV5bsz_93dH6EnlNyTAlJT9amq49pRtkDNKFZliZ8RvhDNCHklCapIOQIPQlhTQid8Yw-RkeMci45YxP0Y-mhAg9tb3WDL9raFra3rsWuwpfz9xRfQ6N7uwXcu_GC4WKHP3a61CZyrS1e48Vt58Lg4ee379cQOtcGwPNWN7sAYYxZ3OJPduvwW91rfObdBqd4WetIUZw3McNE88pHf8C6LXHuNp32NsQhonPlqjvVU_SoihA8O5xTtDpbrPLz5OrDu4t8fpUYLilLpJwJmUGWkorTkpcCpKgMlYJxzYUptMh4SYUs0rTQGQVpSJFJTjQxrCwrNkVv9rHdUGygNHE3Xjeq83aj_U45bdXfL62t1We3VbNTwWg6iwEvDwHefR0g9GrtBh83ElTKGCdSitjVFL3aU8a7EGIL9wZK1FirGmtVY62RffHnSPfkXY8RSPbAjWt68OFLM9yAVzXopq__GXhy4G0Du_-b1WW-PP_94xecR76e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334088751</pqid></control><display><type>article</type><title>Preferential Inhibition of JAK1 Relative to JAK3 by Upadacitinib: Exposure‐Response Analyses of Ex Vivo Data From 2 Phase 1 Clinical Trials and Comparison to Tofacitinib</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mohamed, Mohamed‐Eslam F. ; Beck, Denise ; Camp, Heidi S. ; Othman, Ahmed A.</creator><creatorcontrib>Mohamed, Mohamed‐Eslam F. ; Beck, Denise ; Camp, Heidi S. ; Othman, Ahmed A.</creatorcontrib><description>Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor being developed for treatment of rheumatoid arthritis. This study characterizes the relationships between upadacitinib exposure and interleukin (IL)‐6–induced signal transducer and activator of transcription proteins 3 (STAT3) phosphorylation (pSTAT3) and IL‐7–induced STAT5 phosphorylation (pSTAT5) in the ex vivo setting as measures for JAK1 and JAK1/JAK3 inhibition, respectively, with comparison to tofacitinib. Drug plasma concentrations and ex vivo IL‐6–induced pSTAT3 and IL‐7–induced pSTAT5 in blood from subjects evaluated in 2 phase 1 studies who received immediate‐release 1 mg to 48 mg upadacitinib, 5 mg twice daily (BID) tofacitinib, or placebo were determined. Exposure‐response models were developed, and the effects of different upadacitinib doses on ex vivo biomarker responses were simulated and compared to tofacitinib. Upadacitinib (and tofacitinib) reversibly inhibited IL‐6–induced pSTAT3 and IL‐7–induced pSTAT5 in a concentration‐dependent manner. Model‐estimated values of 50% of the maximum effect were 60.7 nM for upadacitinib and 119 nM for tofacitinib for IL‐6–induced pSTAT3 inhibition, and 125 nM for upadacitinib and 79.1 nM for tofacitinib for IL‐7–induced pSTAT5 inhibition. Tofacitinib 5 mg BID is estimated to have a similar magnitude of effect on IL‐6–induced pSTAT3 to ∼3 mg BID of upadacitinib (immediate‐release formulation), whereas a 4‐fold higher dose of upadacitinib (∼12 mg BID), is estimated to show a similar magnitude of inhibition on IL‐7–induced pSTAT5 as tofacitinb 5 mg BID. This study confirms that in humans, upadacitinib has greater selectivity for JAK1 vs JAK3 relative to the rheumatoid arthritis approved dose of tofacitinib, and results from these analyses informed the selection of upadacitinib IR doses evaluated in phase 2.</description><identifier>ISSN: 0091-2700</identifier><identifier>EISSN: 1552-4604</identifier><identifier>DOI: 10.1002/jcph.1513</identifier><identifier>PMID: 31448433</identifier><language>eng</language><publisher>England: American College of Clinical Pharmacology</publisher><subject><![CDATA[Adolescent ; Adult ; Arthritis, Rheumatoid - drug therapy ; Clinical trials ; Clinical Trials, Phase I as Topic ; Computer simulation ; Dose-Response Relationship, Drug ; Drug Administration Schedule ; Enzyme inhibitors ; Exposure ; Female ; Healthy Volunteers ; Heterocyclic Compounds, 3-Ring - administration & dosage ; Heterocyclic Compounds, 3-Ring - pharmacokinetics ; Heterocyclic Compounds, 3-Ring - pharmacology ; Heterocyclic Compounds, 3-Ring - therapeutic use ; Humans ; IL‐6 ; IL‐7 ; JAK1 ; JAK3 ; Janus kinase ; Janus Kinase 1 - antagonists & inhibitors ; Janus Kinase 3 - antagonists & inhibitors ; Male ; Middle Aged ; Models, Biological ; Pharmacodynamics ; Phosphorylation ; Phosphorylation - drug effects ; Piperidines - administration & dosage ; Piperidines - pharmacokinetics ; Piperidines - pharmacology ; Piperidines - therapeutic use ; Protein Kinase Inhibitors - administration & dosage ; Protein Kinase Inhibitors - pharmacokinetics ; Protein Kinase Inhibitors - pharmacology ; Protein Kinase Inhibitors - therapeutic use ; Pyrimidines - administration & dosage ; Pyrimidines - pharmacokinetics ; Pyrimidines - pharmacology ; Pyrimidines - therapeutic use ; Rheumatoid arthritis ; Selectivity ; STAT3 ; Stat3 protein ; STAT3 Transcription Factor - drug effects ; STAT3 Transcription Factor - metabolism ; STAT5 ; Stat5 protein ; STAT5 Transcription Factor - drug effects ; STAT5 Transcription Factor - metabolism ; target engagement ; tofacitinib ; Transcription ; upadacitinib ; Young Adult]]></subject><ispartof>Journal of clinical pharmacology, 2020-02, Vol.60 (2), p.188-197</ispartof><rights>2019 AbbVie Inc. published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology</rights><rights>2019 American College of Clinical Pharmacology</rights><rights>2019 AbbVie Inc. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.</rights><rights>2020, The American College of Clinical Pharmacology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4813-886785e520f41d4d7e87fc18734a47cba754d178b22ba51e8c0b5840a0c3ddf3</citedby><cites>FETCH-LOGICAL-c4813-886785e520f41d4d7e87fc18734a47cba754d178b22ba51e8c0b5840a0c3ddf3</cites><orcidid>0000-0002-4937-2775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcph.1513$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcph.1513$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31448433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohamed, Mohamed‐Eslam F.</creatorcontrib><creatorcontrib>Beck, Denise</creatorcontrib><creatorcontrib>Camp, Heidi S.</creatorcontrib><creatorcontrib>Othman, Ahmed A.</creatorcontrib><title>Preferential Inhibition of JAK1 Relative to JAK3 by Upadacitinib: Exposure‐Response Analyses of Ex Vivo Data From 2 Phase 1 Clinical Trials and Comparison to Tofacitinib</title><title>Journal of clinical pharmacology</title><addtitle>J Clin Pharmacol</addtitle><description>Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor being developed for treatment of rheumatoid arthritis. This study characterizes the relationships between upadacitinib exposure and interleukin (IL)‐6–induced signal transducer and activator of transcription proteins 3 (STAT3) phosphorylation (pSTAT3) and IL‐7–induced STAT5 phosphorylation (pSTAT5) in the ex vivo setting as measures for JAK1 and JAK1/JAK3 inhibition, respectively, with comparison to tofacitinib. Drug plasma concentrations and ex vivo IL‐6–induced pSTAT3 and IL‐7–induced pSTAT5 in blood from subjects evaluated in 2 phase 1 studies who received immediate‐release 1 mg to 48 mg upadacitinib, 5 mg twice daily (BID) tofacitinib, or placebo were determined. Exposure‐response models were developed, and the effects of different upadacitinib doses on ex vivo biomarker responses were simulated and compared to tofacitinib. Upadacitinib (and tofacitinib) reversibly inhibited IL‐6–induced pSTAT3 and IL‐7–induced pSTAT5 in a concentration‐dependent manner. Model‐estimated values of 50% of the maximum effect were 60.7 nM for upadacitinib and 119 nM for tofacitinib for IL‐6–induced pSTAT3 inhibition, and 125 nM for upadacitinib and 79.1 nM for tofacitinib for IL‐7–induced pSTAT5 inhibition. Tofacitinib 5 mg BID is estimated to have a similar magnitude of effect on IL‐6–induced pSTAT3 to ∼3 mg BID of upadacitinib (immediate‐release formulation), whereas a 4‐fold higher dose of upadacitinib (∼12 mg BID), is estimated to show a similar magnitude of inhibition on IL‐7–induced pSTAT5 as tofacitinb 5 mg BID. This study confirms that in humans, upadacitinib has greater selectivity for JAK1 vs JAK3 relative to the rheumatoid arthritis approved dose of tofacitinib, and results from these analyses informed the selection of upadacitinib IR doses evaluated in phase 2.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Arthritis, Rheumatoid - drug therapy</subject><subject>Clinical trials</subject><subject>Clinical Trials, Phase I as Topic</subject><subject>Computer simulation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Administration Schedule</subject><subject>Enzyme inhibitors</subject><subject>Exposure</subject><subject>Female</subject><subject>Healthy Volunteers</subject><subject>Heterocyclic Compounds, 3-Ring - administration &amp; dosage</subject><subject>Heterocyclic Compounds, 3-Ring - pharmacokinetics</subject><subject>Heterocyclic Compounds, 3-Ring - pharmacology</subject><subject>Heterocyclic Compounds, 3-Ring - therapeutic use</subject><subject>Humans</subject><subject>IL‐6</subject><subject>IL‐7</subject><subject>JAK1</subject><subject>JAK3</subject><subject>Janus kinase</subject><subject>Janus Kinase 1 - antagonists &amp; inhibitors</subject><subject>Janus Kinase 3 - antagonists &amp; inhibitors</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Pharmacodynamics</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Piperidines - administration &amp; dosage</subject><subject>Piperidines - pharmacokinetics</subject><subject>Piperidines - pharmacology</subject><subject>Piperidines - therapeutic use</subject><subject>Protein Kinase Inhibitors - administration &amp; dosage</subject><subject>Protein Kinase Inhibitors - pharmacokinetics</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Pyrimidines - administration &amp; dosage</subject><subject>Pyrimidines - pharmacokinetics</subject><subject>Pyrimidines - pharmacology</subject><subject>Pyrimidines - therapeutic use</subject><subject>Rheumatoid arthritis</subject><subject>Selectivity</subject><subject>STAT3</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - drug effects</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>STAT5</subject><subject>Stat5 protein</subject><subject>STAT5 Transcription Factor - drug effects</subject><subject>STAT5 Transcription Factor - metabolism</subject><subject>target engagement</subject><subject>tofacitinib</subject><subject>Transcription</subject><subject>upadacitinib</subject><subject>Young Adult</subject><issn>0091-2700</issn><issn>1552-4604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kdFu0zAUhi0EYqVwwQsgS1xxkc2OndrjAqkKHduYRDUVbi3HOSEuaRzspFvveATeg7fiSXBoN4EEV5bsz_93dH6EnlNyTAlJT9amq49pRtkDNKFZliZ8RvhDNCHklCapIOQIPQlhTQid8Yw-RkeMci45YxP0Y-mhAg9tb3WDL9raFra3rsWuwpfz9xRfQ6N7uwXcu_GC4WKHP3a61CZyrS1e48Vt58Lg4ee379cQOtcGwPNWN7sAYYxZ3OJPduvwW91rfObdBqd4WetIUZw3McNE88pHf8C6LXHuNp32NsQhonPlqjvVU_SoihA8O5xTtDpbrPLz5OrDu4t8fpUYLilLpJwJmUGWkorTkpcCpKgMlYJxzYUptMh4SYUs0rTQGQVpSJFJTjQxrCwrNkVv9rHdUGygNHE3Xjeq83aj_U45bdXfL62t1We3VbNTwWg6iwEvDwHefR0g9GrtBh83ElTKGCdSitjVFL3aU8a7EGIL9wZK1FirGmtVY62RffHnSPfkXY8RSPbAjWt68OFLM9yAVzXopq__GXhy4G0Du_-b1WW-PP_94xecR76e</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Mohamed, Mohamed‐Eslam F.</creator><creator>Beck, Denise</creator><creator>Camp, Heidi S.</creator><creator>Othman, Ahmed A.</creator><general>American College of Clinical Pharmacology</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4937-2775</orcidid></search><sort><creationdate>202002</creationdate><title>Preferential Inhibition of JAK1 Relative to JAK3 by Upadacitinib: Exposure‐Response Analyses of Ex Vivo Data From 2 Phase 1 Clinical Trials and Comparison to Tofacitinib</title><author>Mohamed, Mohamed‐Eslam F. ; Beck, Denise ; Camp, Heidi S. ; Othman, Ahmed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4813-886785e520f41d4d7e87fc18734a47cba754d178b22ba51e8c0b5840a0c3ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Arthritis, Rheumatoid - drug therapy</topic><topic>Clinical trials</topic><topic>Clinical Trials, Phase I as Topic</topic><topic>Computer simulation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Administration Schedule</topic><topic>Enzyme inhibitors</topic><topic>Exposure</topic><topic>Female</topic><topic>Healthy Volunteers</topic><topic>Heterocyclic Compounds, 3-Ring - administration &amp; dosage</topic><topic>Heterocyclic Compounds, 3-Ring - pharmacokinetics</topic><topic>Heterocyclic Compounds, 3-Ring - pharmacology</topic><topic>Heterocyclic Compounds, 3-Ring - therapeutic use</topic><topic>Humans</topic><topic>IL‐6</topic><topic>IL‐7</topic><topic>JAK1</topic><topic>JAK3</topic><topic>Janus kinase</topic><topic>Janus Kinase 1 - antagonists &amp; inhibitors</topic><topic>Janus Kinase 3 - antagonists &amp; inhibitors</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Pharmacodynamics</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Piperidines - administration &amp; dosage</topic><topic>Piperidines - pharmacokinetics</topic><topic>Piperidines - pharmacology</topic><topic>Piperidines - therapeutic use</topic><topic>Protein Kinase Inhibitors - administration &amp; dosage</topic><topic>Protein Kinase Inhibitors - pharmacokinetics</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Pyrimidines - administration &amp; dosage</topic><topic>Pyrimidines - pharmacokinetics</topic><topic>Pyrimidines - pharmacology</topic><topic>Pyrimidines - therapeutic use</topic><topic>Rheumatoid arthritis</topic><topic>Selectivity</topic><topic>STAT3</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - drug effects</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>STAT5</topic><topic>Stat5 protein</topic><topic>STAT5 Transcription Factor - drug effects</topic><topic>STAT5 Transcription Factor - metabolism</topic><topic>target engagement</topic><topic>tofacitinib</topic><topic>Transcription</topic><topic>upadacitinib</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Mohamed‐Eslam F.</creatorcontrib><creatorcontrib>Beck, Denise</creatorcontrib><creatorcontrib>Camp, Heidi S.</creatorcontrib><creatorcontrib>Othman, Ahmed A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Mohamed‐Eslam F.</au><au>Beck, Denise</au><au>Camp, Heidi S.</au><au>Othman, Ahmed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential Inhibition of JAK1 Relative to JAK3 by Upadacitinib: Exposure‐Response Analyses of Ex Vivo Data From 2 Phase 1 Clinical Trials and Comparison to Tofacitinib</atitle><jtitle>Journal of clinical pharmacology</jtitle><addtitle>J Clin Pharmacol</addtitle><date>2020-02</date><risdate>2020</risdate><volume>60</volume><issue>2</issue><spage>188</spage><epage>197</epage><pages>188-197</pages><issn>0091-2700</issn><eissn>1552-4604</eissn><abstract>Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor being developed for treatment of rheumatoid arthritis. This study characterizes the relationships between upadacitinib exposure and interleukin (IL)‐6–induced signal transducer and activator of transcription proteins 3 (STAT3) phosphorylation (pSTAT3) and IL‐7–induced STAT5 phosphorylation (pSTAT5) in the ex vivo setting as measures for JAK1 and JAK1/JAK3 inhibition, respectively, with comparison to tofacitinib. Drug plasma concentrations and ex vivo IL‐6–induced pSTAT3 and IL‐7–induced pSTAT5 in blood from subjects evaluated in 2 phase 1 studies who received immediate‐release 1 mg to 48 mg upadacitinib, 5 mg twice daily (BID) tofacitinib, or placebo were determined. Exposure‐response models were developed, and the effects of different upadacitinib doses on ex vivo biomarker responses were simulated and compared to tofacitinib. Upadacitinib (and tofacitinib) reversibly inhibited IL‐6–induced pSTAT3 and IL‐7–induced pSTAT5 in a concentration‐dependent manner. Model‐estimated values of 50% of the maximum effect were 60.7 nM for upadacitinib and 119 nM for tofacitinib for IL‐6–induced pSTAT3 inhibition, and 125 nM for upadacitinib and 79.1 nM for tofacitinib for IL‐7–induced pSTAT5 inhibition. Tofacitinib 5 mg BID is estimated to have a similar magnitude of effect on IL‐6–induced pSTAT3 to ∼3 mg BID of upadacitinib (immediate‐release formulation), whereas a 4‐fold higher dose of upadacitinib (∼12 mg BID), is estimated to show a similar magnitude of inhibition on IL‐7–induced pSTAT5 as tofacitinb 5 mg BID. This study confirms that in humans, upadacitinib has greater selectivity for JAK1 vs JAK3 relative to the rheumatoid arthritis approved dose of tofacitinib, and results from these analyses informed the selection of upadacitinib IR doses evaluated in phase 2.</abstract><cop>England</cop><pub>American College of Clinical Pharmacology</pub><pmid>31448433</pmid><doi>10.1002/jcph.1513</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4937-2775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-2700
ispartof Journal of clinical pharmacology, 2020-02, Vol.60 (2), p.188-197
issn 0091-2700
1552-4604
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6973126
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adolescent
Adult
Arthritis, Rheumatoid - drug therapy
Clinical trials
Clinical Trials, Phase I as Topic
Computer simulation
Dose-Response Relationship, Drug
Drug Administration Schedule
Enzyme inhibitors
Exposure
Female
Healthy Volunteers
Heterocyclic Compounds, 3-Ring - administration & dosage
Heterocyclic Compounds, 3-Ring - pharmacokinetics
Heterocyclic Compounds, 3-Ring - pharmacology
Heterocyclic Compounds, 3-Ring - therapeutic use
Humans
IL‐6
IL‐7
JAK1
JAK3
Janus kinase
Janus Kinase 1 - antagonists & inhibitors
Janus Kinase 3 - antagonists & inhibitors
Male
Middle Aged
Models, Biological
Pharmacodynamics
Phosphorylation
Phosphorylation - drug effects
Piperidines - administration & dosage
Piperidines - pharmacokinetics
Piperidines - pharmacology
Piperidines - therapeutic use
Protein Kinase Inhibitors - administration & dosage
Protein Kinase Inhibitors - pharmacokinetics
Protein Kinase Inhibitors - pharmacology
Protein Kinase Inhibitors - therapeutic use
Pyrimidines - administration & dosage
Pyrimidines - pharmacokinetics
Pyrimidines - pharmacology
Pyrimidines - therapeutic use
Rheumatoid arthritis
Selectivity
STAT3
Stat3 protein
STAT3 Transcription Factor - drug effects
STAT3 Transcription Factor - metabolism
STAT5
Stat5 protein
STAT5 Transcription Factor - drug effects
STAT5 Transcription Factor - metabolism
target engagement
tofacitinib
Transcription
upadacitinib
Young Adult
title Preferential Inhibition of JAK1 Relative to JAK3 by Upadacitinib: Exposure‐Response Analyses of Ex Vivo Data From 2 Phase 1 Clinical Trials and Comparison to Tofacitinib
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20Inhibition%20of%20JAK1%20Relative%20to%20JAK3%20by%20Upadacitinib:%20Exposure%E2%80%90Response%20Analyses%20of%20Ex%20Vivo%20Data%20From%202%20Phase%201%20Clinical%20Trials%20and%20Comparison%20to%20Tofacitinib&rft.jtitle=Journal%20of%20clinical%20pharmacology&rft.au=Mohamed,%20Mohamed%E2%80%90Eslam%20F.&rft.date=2020-02&rft.volume=60&rft.issue=2&rft.spage=188&rft.epage=197&rft.pages=188-197&rft.issn=0091-2700&rft.eissn=1552-4604&rft_id=info:doi/10.1002/jcph.1513&rft_dat=%3Cproquest_pubme%3E2334088751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334088751&rft_id=info:pmid/31448433&rfr_iscdi=true