Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae

Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-01, Vol.10 (1), p.819, Article 819
Hauptverfasser: Yang, Shun-Kai, Yusoff, Khatijah, Thomas, Warren, Akseer, Riaz, Alhosani, Maryam Sultan, Abushelaibi, Aisha, Lim, Swee-Hua-Erin, Lai, Kok-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 819
container_title Scientific reports
container_volume 10
creator Yang, Shun-Kai
Yusoff, Khatijah
Thomas, Warren
Akseer, Riaz
Alhosani, Maryam Sultan
Abushelaibi, Aisha
Lim, Swee-Hua-Erin
Lai, Kok-Song
description Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K . pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K . pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.
doi_str_mv 10.1038/s41598-019-55601-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6972767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343026792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-5b4150c21de7ec8197ef4fedca03aac681f3141eaa9b3af92ef62a1705add3483</originalsourceid><addsrcrecordid>eNp9UctO3DAUtVCrgig_wAJZ6jrgR17eVKpQWxAjsYG1deNczxgldmonU_iO_nANQ4Fu8OZaOo_7OIQcc3bKmWzPUskr1RaMq6KqasYLtkcOBCurQkghPrz575OjlO5YfpVQJVefyL7kqi4VYwfkzwq26HuMFFNCPzsYaHADdb5fDCYa7l0Ps9siTXPMFPp748yGjqF31mV83iDtwMwYH5Ujjl0Ej3TCOCJ0bnDzAw2WGogdTOhxhJTRGLK782t6NWCXHA4D0MnjMgbvAD-TjxaGhEfP9ZDc_vh-c35RrK5_Xp5_WxWm4nwuqi6fgBnBe2zQtFw1aEuLvQEmAUzdcit5yRFAdRKsEmhrAbxhFfS9LFt5SL7ufKelG7Murx9h0FN0I8QHHcDp_xHvNnodtrpWjWjqJht8eTaI4deCadZ3YYk-z6yFLCUTdaNEZokdy8SQUkT70oEz_Zil3mWpc5b6KUvNsujk7Wwvkn_JZYLcEVKG_Brja-93bP8CF2Wv0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343026792</pqid></control><display><type>article</type><title>Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Shun-Kai ; Yusoff, Khatijah ; Thomas, Warren ; Akseer, Riaz ; Alhosani, Maryam Sultan ; Abushelaibi, Aisha ; Lim, Swee-Hua-Erin ; Lai, Kok-Song</creator><creatorcontrib>Yang, Shun-Kai ; Yusoff, Khatijah ; Thomas, Warren ; Akseer, Riaz ; Alhosani, Maryam Sultan ; Abushelaibi, Aisha ; Lim, Swee-Hua-Erin ; Lai, Kok-Song</creatorcontrib><description>Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K . pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K . pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-55601-0</identifier><identifier>PMID: 31964900</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 631/154/436 ; 631/326/22/1434 ; 82/58 ; 82/80 ; Agricultural industry ; Anti-Bacterial Agents ; Antibiotics ; Antimicrobial agents ; Bacteria ; Bacterial Proteins - metabolism ; beta-Lactamases - metabolism ; Carbapenemase ; Cell death ; Cell Membrane Permeability - drug effects ; Cell surface ; Drug Resistance, Bacterial ; Drug Synergism ; Essential oils ; Ethidium bromide ; Feasibility Studies ; Humanities and Social Sciences ; Klebsiella pneumoniae ; Klebsiella pneumoniae - cytology ; Klebsiella pneumoniae - drug effects ; Klebsiella pneumoniae - growth &amp; development ; Klebsiella pneumoniae - metabolism ; Lipid peroxidation ; Membrane permeability ; Membranes ; Meropenem ; Meropenem - pharmacology ; Microbial Sensitivity Tests ; multidisciplinary ; Multidrug resistance ; Oils &amp; fats ; Oils, Volatile - pharmacology ; Oxidative stress ; Oxidative Stress - drug effects ; Permeability ; Peroxidation ; Plant Oils - pharmacology ; Reactive Oxygen Species - metabolism ; Scanning electron microscopy ; Science ; Science (multidisciplinary) ; Surface charge ; Zeta potential</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.819, Article 819</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-5b4150c21de7ec8197ef4fedca03aac681f3141eaa9b3af92ef62a1705add3483</citedby><cites>FETCH-LOGICAL-c511t-5b4150c21de7ec8197ef4fedca03aac681f3141eaa9b3af92ef62a1705add3483</cites><orcidid>0000-0002-9275-3653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972767/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972767/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31964900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Shun-Kai</creatorcontrib><creatorcontrib>Yusoff, Khatijah</creatorcontrib><creatorcontrib>Thomas, Warren</creatorcontrib><creatorcontrib>Akseer, Riaz</creatorcontrib><creatorcontrib>Alhosani, Maryam Sultan</creatorcontrib><creatorcontrib>Abushelaibi, Aisha</creatorcontrib><creatorcontrib>Lim, Swee-Hua-Erin</creatorcontrib><creatorcontrib>Lai, Kok-Song</creatorcontrib><title>Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K . pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K . pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.</description><subject>38/39</subject><subject>631/154/436</subject><subject>631/326/22/1434</subject><subject>82/58</subject><subject>82/80</subject><subject>Agricultural industry</subject><subject>Anti-Bacterial Agents</subject><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>beta-Lactamases - metabolism</subject><subject>Carbapenemase</subject><subject>Cell death</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cell surface</subject><subject>Drug Resistance, Bacterial</subject><subject>Drug Synergism</subject><subject>Essential oils</subject><subject>Ethidium bromide</subject><subject>Feasibility Studies</subject><subject>Humanities and Social Sciences</subject><subject>Klebsiella pneumoniae</subject><subject>Klebsiella pneumoniae - cytology</subject><subject>Klebsiella pneumoniae - drug effects</subject><subject>Klebsiella pneumoniae - growth &amp; development</subject><subject>Klebsiella pneumoniae - metabolism</subject><subject>Lipid peroxidation</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Meropenem</subject><subject>Meropenem - pharmacology</subject><subject>Microbial Sensitivity Tests</subject><subject>multidisciplinary</subject><subject>Multidrug resistance</subject><subject>Oils &amp; fats</subject><subject>Oils, Volatile - pharmacology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Permeability</subject><subject>Peroxidation</subject><subject>Plant Oils - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface charge</subject><subject>Zeta potential</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctO3DAUtVCrgig_wAJZ6jrgR17eVKpQWxAjsYG1deNczxgldmonU_iO_nANQ4Fu8OZaOo_7OIQcc3bKmWzPUskr1RaMq6KqasYLtkcOBCurQkghPrz575OjlO5YfpVQJVefyL7kqi4VYwfkzwq26HuMFFNCPzsYaHADdb5fDCYa7l0Ps9siTXPMFPp748yGjqF31mV83iDtwMwYH5Ujjl0Ej3TCOCJ0bnDzAw2WGogdTOhxhJTRGLK782t6NWCXHA4D0MnjMgbvAD-TjxaGhEfP9ZDc_vh-c35RrK5_Xp5_WxWm4nwuqi6fgBnBe2zQtFw1aEuLvQEmAUzdcit5yRFAdRKsEmhrAbxhFfS9LFt5SL7ufKelG7Murx9h0FN0I8QHHcDp_xHvNnodtrpWjWjqJht8eTaI4deCadZ3YYk-z6yFLCUTdaNEZokdy8SQUkT70oEz_Zil3mWpc5b6KUvNsujk7Wwvkn_JZYLcEVKG_Brja-93bP8CF2Wv0Q</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Yang, Shun-Kai</creator><creator>Yusoff, Khatijah</creator><creator>Thomas, Warren</creator><creator>Akseer, Riaz</creator><creator>Alhosani, Maryam Sultan</creator><creator>Abushelaibi, Aisha</creator><creator>Lim, Swee-Hua-Erin</creator><creator>Lai, Kok-Song</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9275-3653</orcidid></search><sort><creationdate>20200121</creationdate><title>Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae</title><author>Yang, Shun-Kai ; Yusoff, Khatijah ; Thomas, Warren ; Akseer, Riaz ; Alhosani, Maryam Sultan ; Abushelaibi, Aisha ; Lim, Swee-Hua-Erin ; Lai, Kok-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-5b4150c21de7ec8197ef4fedca03aac681f3141eaa9b3af92ef62a1705add3483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/39</topic><topic>631/154/436</topic><topic>631/326/22/1434</topic><topic>82/58</topic><topic>82/80</topic><topic>Agricultural industry</topic><topic>Anti-Bacterial Agents</topic><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>beta-Lactamases - metabolism</topic><topic>Carbapenemase</topic><topic>Cell death</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cell surface</topic><topic>Drug Resistance, Bacterial</topic><topic>Drug Synergism</topic><topic>Essential oils</topic><topic>Ethidium bromide</topic><topic>Feasibility Studies</topic><topic>Humanities and Social Sciences</topic><topic>Klebsiella pneumoniae</topic><topic>Klebsiella pneumoniae - cytology</topic><topic>Klebsiella pneumoniae - drug effects</topic><topic>Klebsiella pneumoniae - growth &amp; development</topic><topic>Klebsiella pneumoniae - metabolism</topic><topic>Lipid peroxidation</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Meropenem</topic><topic>Meropenem - pharmacology</topic><topic>Microbial Sensitivity Tests</topic><topic>multidisciplinary</topic><topic>Multidrug resistance</topic><topic>Oils &amp; fats</topic><topic>Oils, Volatile - pharmacology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Permeability</topic><topic>Peroxidation</topic><topic>Plant Oils - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface charge</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shun-Kai</creatorcontrib><creatorcontrib>Yusoff, Khatijah</creatorcontrib><creatorcontrib>Thomas, Warren</creatorcontrib><creatorcontrib>Akseer, Riaz</creatorcontrib><creatorcontrib>Alhosani, Maryam Sultan</creatorcontrib><creatorcontrib>Abushelaibi, Aisha</creatorcontrib><creatorcontrib>Lim, Swee-Hua-Erin</creatorcontrib><creatorcontrib>Lai, Kok-Song</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shun-Kai</au><au>Yusoff, Khatijah</au><au>Thomas, Warren</au><au>Akseer, Riaz</au><au>Alhosani, Maryam Sultan</au><au>Abushelaibi, Aisha</au><au>Lim, Swee-Hua-Erin</au><au>Lai, Kok-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>819</spage><pages>819-</pages><artnum>819</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K . pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K . pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31964900</pmid><doi>10.1038/s41598-019-55601-0</doi><orcidid>https://orcid.org/0000-0002-9275-3653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-01, Vol.10 (1), p.819, Article 819
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6972767
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 38/39
631/154/436
631/326/22/1434
82/58
82/80
Agricultural industry
Anti-Bacterial Agents
Antibiotics
Antimicrobial agents
Bacteria
Bacterial Proteins - metabolism
beta-Lactamases - metabolism
Carbapenemase
Cell death
Cell Membrane Permeability - drug effects
Cell surface
Drug Resistance, Bacterial
Drug Synergism
Essential oils
Ethidium bromide
Feasibility Studies
Humanities and Social Sciences
Klebsiella pneumoniae
Klebsiella pneumoniae - cytology
Klebsiella pneumoniae - drug effects
Klebsiella pneumoniae - growth & development
Klebsiella pneumoniae - metabolism
Lipid peroxidation
Membrane permeability
Membranes
Meropenem
Meropenem - pharmacology
Microbial Sensitivity Tests
multidisciplinary
Multidrug resistance
Oils & fats
Oils, Volatile - pharmacology
Oxidative stress
Oxidative Stress - drug effects
Permeability
Peroxidation
Plant Oils - pharmacology
Reactive Oxygen Species - metabolism
Scanning electron microscopy
Science
Science (multidisciplinary)
Surface charge
Zeta potential
title Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lavender%20essential%20oil%20induces%20oxidative%20stress%20which%20modifies%20the%20bacterial%20membrane%20permeability%20of%20carbapenemase%20producing%20Klebsiella%20pneumoniae&rft.jtitle=Scientific%20reports&rft.au=Yang,%20Shun-Kai&rft.date=2020-01-21&rft.volume=10&rft.issue=1&rft.spage=819&rft.pages=819-&rft.artnum=819&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-55601-0&rft_dat=%3Cproquest_pubme%3E2343026792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343026792&rft_id=info:pmid/31964900&rfr_iscdi=true