The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers
Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding gold-standar...
Gespeichert in:
Veröffentlicht in: | Scientific data 2020-01, Vol.7 (1), p.23-23, Article 23 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Scientific data |
container_volume | 7 |
creator | Deng, Lijie Lyu, Junyan Huang, Haixiang Deng, Yuqing Yuan, Jin Tang, Xiaoying |
description | Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding gold-standard ulcer segmentation labels), especially for supervised learning based segmentation algorithms. In such context, we prepare a dataset containing 712 ocular staining images and the associated segmentation labels of flaky corneal ulcers. In addition to segmentation labels for flaky corneal ulcers, we also provide each image with three-fold class labels: firstly, each image has a label in terms of its general ulcer pattern; secondly, each image has a label in terms of its specific ulcer pattern; thirdly, each image has a label indicating its ulcer severity degree. This dataset not only provides an excellent opportunity for investigating the accuracy and reliability of different segmentation and classification algorithms for corneal ulcers, but also advances the development of new supervised learning based algorithms especially those in the deep learning framework.
Measurement(s)
corneal ulcer
Technology Type(s)
staining
Factor Type(s)
ulcer severity • ulcer pattern
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.11371803 |
doi_str_mv | 10.1038/s41597-020-0360-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6971241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343039587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-c0bc39a2fad8e4a8994a8ae03076e22b371a229cba8fe960d9f01b3a11f6578b3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaEKSH5BLMfTSi9vRhy3rUiihXxDoYXcPOYmxPN51kK1UsgP776tl0zQttAd9Mc-8M6OXsSsO7zjI5n1SvDK6BAElyBpK_YKdCahEqVQtXz67n7LLlO4AgEsFlYZX7FRyk3Pr5oyt1zsqVpvVmtyuXN2uNkWHMyaaiz7EApc5jDgPDr3fF4m2I03zMG0LnLrCeUxp6PeHtwtxIvTF4h3FdMFOevSJLh_Pc7b5_Gl9_bW8-f7l2_XHm9Ip08ylg9ZJg6LHriGFjTF5QwIJuiYhWqk5CmFci01PpobO9MBbiZz3daWbVp6zD0fd-6UdqXO5uYje3sdhxLi3AQf7Z2QadnYbHmxtNBeKZ4G3jwIx_FgozXYckiPvcaKwJCukkiBN1eiMvvkLvQtLnPJ4VqjcOugq__X_KKmEgrxUpviRcjGkFKl_apmDPZhrj-babK49mGsP9V8_n_Up45eVGRBHIOXQtKX4u_S_VX8CgRqvBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342404244</pqid></control><display><type>article</type><title>The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Deng, Lijie ; Lyu, Junyan ; Huang, Haixiang ; Deng, Yuqing ; Yuan, Jin ; Tang, Xiaoying</creator><creatorcontrib>Deng, Lijie ; Lyu, Junyan ; Huang, Haixiang ; Deng, Yuqing ; Yuan, Jin ; Tang, Xiaoying</creatorcontrib><description>Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding gold-standard ulcer segmentation labels), especially for supervised learning based segmentation algorithms. In such context, we prepare a dataset containing 712 ocular staining images and the associated segmentation labels of flaky corneal ulcers. In addition to segmentation labels for flaky corneal ulcers, we also provide each image with three-fold class labels: firstly, each image has a label in terms of its general ulcer pattern; secondly, each image has a label in terms of its specific ulcer pattern; thirdly, each image has a label indicating its ulcer severity degree. This dataset not only provides an excellent opportunity for investigating the accuracy and reliability of different segmentation and classification algorithms for corneal ulcers, but also advances the development of new supervised learning based algorithms especially those in the deep learning framework.
Measurement(s)
corneal ulcer
Technology Type(s)
staining
Factor Type(s)
ulcer severity • ulcer pattern
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.11371803</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-020-0360-7</identifier><identifier>PMID: 31959768</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1314 ; 631/1647/245/2225 ; 692/699/3161/3163 ; Algorithms ; Cornea ; Corneal Ulcer - diagnostic imaging ; Data Descriptor ; Datasets ; Deep learning ; Humanities and Social Sciences ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; multidisciplinary ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Segmentation ; Ulcers</subject><ispartof>Scientific data, 2020-01, Vol.7 (1), p.23-23, Article 23</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-c0bc39a2fad8e4a8994a8ae03076e22b371a229cba8fe960d9f01b3a11f6578b3</citedby><cites>FETCH-LOGICAL-c498t-c0bc39a2fad8e4a8994a8ae03076e22b371a229cba8fe960d9f01b3a11f6578b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971241/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971241/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31959768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Lijie</creatorcontrib><creatorcontrib>Lyu, Junyan</creatorcontrib><creatorcontrib>Huang, Haixiang</creatorcontrib><creatorcontrib>Deng, Yuqing</creatorcontrib><creatorcontrib>Yuan, Jin</creatorcontrib><creatorcontrib>Tang, Xiaoying</creatorcontrib><title>The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding gold-standard ulcer segmentation labels), especially for supervised learning based segmentation algorithms. In such context, we prepare a dataset containing 712 ocular staining images and the associated segmentation labels of flaky corneal ulcers. In addition to segmentation labels for flaky corneal ulcers, we also provide each image with three-fold class labels: firstly, each image has a label in terms of its general ulcer pattern; secondly, each image has a label in terms of its specific ulcer pattern; thirdly, each image has a label indicating its ulcer severity degree. This dataset not only provides an excellent opportunity for investigating the accuracy and reliability of different segmentation and classification algorithms for corneal ulcers, but also advances the development of new supervised learning based algorithms especially those in the deep learning framework.
Measurement(s)
corneal ulcer
Technology Type(s)
staining
Factor Type(s)
ulcer severity • ulcer pattern
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.11371803</description><subject>631/114/1314</subject><subject>631/1647/245/2225</subject><subject>692/699/3161/3163</subject><subject>Algorithms</subject><subject>Cornea</subject><subject>Corneal Ulcer - diagnostic imaging</subject><subject>Data Descriptor</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>multidisciplinary</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Ulcers</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVpaEKSH5BLMfTSi9vRhy3rUiihXxDoYXcPOYmxPN51kK1UsgP776tl0zQttAd9Mc-8M6OXsSsO7zjI5n1SvDK6BAElyBpK_YKdCahEqVQtXz67n7LLlO4AgEsFlYZX7FRyk3Pr5oyt1zsqVpvVmtyuXN2uNkWHMyaaiz7EApc5jDgPDr3fF4m2I03zMG0LnLrCeUxp6PeHtwtxIvTF4h3FdMFOevSJLh_Pc7b5_Gl9_bW8-f7l2_XHm9Ip08ylg9ZJg6LHriGFjTF5QwIJuiYhWqk5CmFci01PpobO9MBbiZz3daWbVp6zD0fd-6UdqXO5uYje3sdhxLi3AQf7Z2QadnYbHmxtNBeKZ4G3jwIx_FgozXYckiPvcaKwJCukkiBN1eiMvvkLvQtLnPJ4VqjcOugq__X_KKmEgrxUpviRcjGkFKl_apmDPZhrj-babK49mGsP9V8_n_Up45eVGRBHIOXQtKX4u_S_VX8CgRqvBw</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Deng, Lijie</creator><creator>Lyu, Junyan</creator><creator>Huang, Haixiang</creator><creator>Deng, Yuqing</creator><creator>Yuan, Jin</creator><creator>Tang, Xiaoying</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200120</creationdate><title>The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers</title><author>Deng, Lijie ; Lyu, Junyan ; Huang, Haixiang ; Deng, Yuqing ; Yuan, Jin ; Tang, Xiaoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-c0bc39a2fad8e4a8994a8ae03076e22b371a229cba8fe960d9f01b3a11f6578b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/1314</topic><topic>631/1647/245/2225</topic><topic>692/699/3161/3163</topic><topic>Algorithms</topic><topic>Cornea</topic><topic>Corneal Ulcer - diagnostic imaging</topic><topic>Data Descriptor</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>multidisciplinary</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Ulcers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Lijie</creatorcontrib><creatorcontrib>Lyu, Junyan</creatorcontrib><creatorcontrib>Huang, Haixiang</creatorcontrib><creatorcontrib>Deng, Yuqing</creatorcontrib><creatorcontrib>Yuan, Jin</creatorcontrib><creatorcontrib>Tang, Xiaoying</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Lijie</au><au>Lyu, Junyan</au><au>Huang, Haixiang</au><au>Deng, Yuqing</au><au>Yuan, Jin</au><au>Tang, Xiaoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2020-01-20</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>23</spage><epage>23</epage><pages>23-23</pages><artnum>23</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding gold-standard ulcer segmentation labels), especially for supervised learning based segmentation algorithms. In such context, we prepare a dataset containing 712 ocular staining images and the associated segmentation labels of flaky corneal ulcers. In addition to segmentation labels for flaky corneal ulcers, we also provide each image with three-fold class labels: firstly, each image has a label in terms of its general ulcer pattern; secondly, each image has a label in terms of its specific ulcer pattern; thirdly, each image has a label indicating its ulcer severity degree. This dataset not only provides an excellent opportunity for investigating the accuracy and reliability of different segmentation and classification algorithms for corneal ulcers, but also advances the development of new supervised learning based algorithms especially those in the deep learning framework.
Measurement(s)
corneal ulcer
Technology Type(s)
staining
Factor Type(s)
ulcer severity • ulcer pattern
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.11371803</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31959768</pmid><doi>10.1038/s41597-020-0360-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4463 |
ispartof | Scientific data, 2020-01, Vol.7 (1), p.23-23, Article 23 |
issn | 2052-4463 2052-4463 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6971241 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/114/1314 631/1647/245/2225 692/699/3161/3163 Algorithms Cornea Corneal Ulcer - diagnostic imaging Data Descriptor Datasets Deep learning Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods multidisciplinary Reproducibility of Results Science Science (multidisciplinary) Segmentation Ulcers |
title | The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SUSTech-SYSU%20dataset%20for%20automatically%20segmenting%20and%20classifying%20corneal%20ulcers&rft.jtitle=Scientific%20data&rft.au=Deng,%20Lijie&rft.date=2020-01-20&rft.volume=7&rft.issue=1&rft.spage=23&rft.epage=23&rft.pages=23-23&rft.artnum=23&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-020-0360-7&rft_dat=%3Cproquest_pubme%3E2343039587%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342404244&rft_id=info:pmid/31959768&rfr_iscdi=true |