Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array
Parallelized fluorescence imaging has been a long-standing pursuit that can address the unmet need for a comprehensive three-dimensional (3D) visualization of dynamical biological processes with minimal photodamage. However, the available approaches are limited to incomplete parallelization in only...
Gespeichert in:
Veröffentlicht in: | Light, science & applications science & applications, 2020-01, Vol.9 (1), p.8-8, Article 8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | Light, science & applications |
container_volume | 9 |
creator | Ren, Yu-Xuan Wu, Jianglai Lai, Queenie T. K. Lai, Hei Ming Siu, Dickson M. D. Wu, Wutian Wong, Kenneth K. Y. Tsia, Kevin K. |
description | Parallelized fluorescence imaging has been a long-standing pursuit that can address the unmet need for a comprehensive three-dimensional (3D) visualization of dynamical biological processes with minimal photodamage. However, the available approaches are limited to incomplete parallelization in only two dimensions or sparse sampling in three dimensions. We hereby develop a novel fluorescence imaging approach, called coded light-sheet array microscopy (CLAM), which allows complete parallelized 3D imaging without mechanical scanning. Harnessing the concept of an “infinity mirror”, CLAM generates a light-sheet array with controllable sheet density and degree of coherence. Thus, CLAM circumvents the common complications of multiple coherent light-sheet generation in terms of dedicated wavefront engineering and mechanical dithering/scanning. Moreover, the encoding of multiplexed optical sections in CLAM allows the synchronous capture of all sectioned images within the imaged volume. We demonstrate the utility of CLAM in different imaging scenarios, including a light-scattering medium, an optically cleared tissue, and microparticles in fluidic flow. CLAM can maximize the signal-to-noise ratio and the spatial duty cycle, and also provides a further reduction in photobleaching compared to the major scanning-based 3D imaging systems. The flexible implementation of CLAM regarding both hardware and software ensures compatibility with any light-sheet imaging modality and could thus be instrumental in a multitude of areas in biological research.
Microscopy: parallel light sheets give a gentler view
A new imaging technique called coded light-sheet array microscopy (CLAM) brings an improved ability to visualize biological samples in three dimensions while minimizing the damage. A research team, led by Kevin Tsia at the University of Hong Kong, developed the technique and demonstrated its use on a variety of biological imaging scenarios. CLAM is a new form of 3D fluorescence microscopy, which collects all the fluorescence signals from the entire illuminated volume of a sample in parallel. Its key innovation is the way it uses a concept called “infinity mirror” to generate an array of parallel slices of laser light (“light sheets”) for three-dimensional imaging without the need for repetitive scanning and with much gentler illumination than the state-of-the-art techniques. CLAM could be applied to existing light sheet fluorescence microscopes, with minimal system modificati |
doi_str_mv | 10.1038/s41377-020-0245-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6971027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342914584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-6442c71c24e3a66c2c58e8b8019d4ba7443291b7bf661f939049bf484d6ee5d43</originalsourceid><addsrcrecordid>eNp9UU1rFTEUDaLYUvsD3MiAGzdT8_2xEaSoFQq60HXIZO68SclMnslM5fnrzfBqrYIGQgL3nHPvuQeh5wRfEMz068IJU6rFFNfLRasfoVOKuWqVYPrxg_8JOi_lBtdjOMFaPUUnjBjDCJWnaPzssosRYvgBfXOb4jrBkoNvhrimDMXD7KGZgs-p-LQ_NN_DMjauyeDTPITdml0XofGpr_Qw-zRChnlpYtiNS1tGgKVxObvDM_RkcLHA-d17hr6-f_fl8qq9_vTh4-Xb69Zzo5dWck69Ip5yYE5KT73QoDuNiel55xTnjBrSqW6QkgyGGcxNN3DNewkges7O0Juj7n7tJujr_Es1aPc5TC4fbHLB_lmZw2h36dZKowimqgq8uhPI6dsKZbFTqGuI0c2Q1mIp45oSocTW6-Vf0Ju05rnas1QISbiRVPwXxXh1w4XetMgRtW26ZBjuRybYboHbY-C2Bm63wK2unBcPvd4zfsVbAfQIKLU07yD_bv1v1Z-0ybco</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342914584</pqid></control><display><type>article</type><title>Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ren, Yu-Xuan ; Wu, Jianglai ; Lai, Queenie T. K. ; Lai, Hei Ming ; Siu, Dickson M. D. ; Wu, Wutian ; Wong, Kenneth K. Y. ; Tsia, Kevin K.</creator><creatorcontrib>Ren, Yu-Xuan ; Wu, Jianglai ; Lai, Queenie T. K. ; Lai, Hei Ming ; Siu, Dickson M. D. ; Wu, Wutian ; Wong, Kenneth K. Y. ; Tsia, Kevin K.</creatorcontrib><description>Parallelized fluorescence imaging has been a long-standing pursuit that can address the unmet need for a comprehensive three-dimensional (3D) visualization of dynamical biological processes with minimal photodamage. However, the available approaches are limited to incomplete parallelization in only two dimensions or sparse sampling in three dimensions. We hereby develop a novel fluorescence imaging approach, called coded light-sheet array microscopy (CLAM), which allows complete parallelized 3D imaging without mechanical scanning. Harnessing the concept of an “infinity mirror”, CLAM generates a light-sheet array with controllable sheet density and degree of coherence. Thus, CLAM circumvents the common complications of multiple coherent light-sheet generation in terms of dedicated wavefront engineering and mechanical dithering/scanning. Moreover, the encoding of multiplexed optical sections in CLAM allows the synchronous capture of all sectioned images within the imaged volume. We demonstrate the utility of CLAM in different imaging scenarios, including a light-scattering medium, an optically cleared tissue, and microparticles in fluidic flow. CLAM can maximize the signal-to-noise ratio and the spatial duty cycle, and also provides a further reduction in photobleaching compared to the major scanning-based 3D imaging systems. The flexible implementation of CLAM regarding both hardware and software ensures compatibility with any light-sheet imaging modality and could thus be instrumental in a multitude of areas in biological research.
Microscopy: parallel light sheets give a gentler view
A new imaging technique called coded light-sheet array microscopy (CLAM) brings an improved ability to visualize biological samples in three dimensions while minimizing the damage. A research team, led by Kevin Tsia at the University of Hong Kong, developed the technique and demonstrated its use on a variety of biological imaging scenarios. CLAM is a new form of 3D fluorescence microscopy, which collects all the fluorescence signals from the entire illuminated volume of a sample in parallel. Its key innovation is the way it uses a concept called “infinity mirror” to generate an array of parallel slices of laser light (“light sheets”) for three-dimensional imaging without the need for repetitive scanning and with much gentler illumination than the state-of-the-art techniques. CLAM could be applied to existing light sheet fluorescence microscopes, with minimal system modifications.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-020-0245-8</identifier><identifier>PMID: 31993126</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1107/328/2237 ; 639/624/1111/55 ; Applied and Technical Physics ; Atomic ; Classical and Continuum Physics ; Fluorescence microscopy ; Lasers ; Light ; Microparticles ; Microscopes ; Microscopy ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photobleaching ; Photonics ; Physics ; Physics and Astronomy ; Scanning ; Three dimensional imaging</subject><ispartof>Light, science & applications, 2020-01, Vol.9 (1), p.8-8, Article 8</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-6442c71c24e3a66c2c58e8b8019d4ba7443291b7bf661f939049bf484d6ee5d43</citedby><cites>FETCH-LOGICAL-c498t-6442c71c24e3a66c2c58e8b8019d4ba7443291b7bf661f939049bf484d6ee5d43</cites><orcidid>0000-0002-6394-9657 ; 0000-0003-3668-3539 ; 0000-0002-4641-3148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971027/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971027/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31993126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Yu-Xuan</creatorcontrib><creatorcontrib>Wu, Jianglai</creatorcontrib><creatorcontrib>Lai, Queenie T. K.</creatorcontrib><creatorcontrib>Lai, Hei Ming</creatorcontrib><creatorcontrib>Siu, Dickson M. D.</creatorcontrib><creatorcontrib>Wu, Wutian</creatorcontrib><creatorcontrib>Wong, Kenneth K. Y.</creatorcontrib><creatorcontrib>Tsia, Kevin K.</creatorcontrib><title>Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array</title><title>Light, science & applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>Parallelized fluorescence imaging has been a long-standing pursuit that can address the unmet need for a comprehensive three-dimensional (3D) visualization of dynamical biological processes with minimal photodamage. However, the available approaches are limited to incomplete parallelization in only two dimensions or sparse sampling in three dimensions. We hereby develop a novel fluorescence imaging approach, called coded light-sheet array microscopy (CLAM), which allows complete parallelized 3D imaging without mechanical scanning. Harnessing the concept of an “infinity mirror”, CLAM generates a light-sheet array with controllable sheet density and degree of coherence. Thus, CLAM circumvents the common complications of multiple coherent light-sheet generation in terms of dedicated wavefront engineering and mechanical dithering/scanning. Moreover, the encoding of multiplexed optical sections in CLAM allows the synchronous capture of all sectioned images within the imaged volume. We demonstrate the utility of CLAM in different imaging scenarios, including a light-scattering medium, an optically cleared tissue, and microparticles in fluidic flow. CLAM can maximize the signal-to-noise ratio and the spatial duty cycle, and also provides a further reduction in photobleaching compared to the major scanning-based 3D imaging systems. The flexible implementation of CLAM regarding both hardware and software ensures compatibility with any light-sheet imaging modality and could thus be instrumental in a multitude of areas in biological research.
Microscopy: parallel light sheets give a gentler view
A new imaging technique called coded light-sheet array microscopy (CLAM) brings an improved ability to visualize biological samples in three dimensions while minimizing the damage. A research team, led by Kevin Tsia at the University of Hong Kong, developed the technique and demonstrated its use on a variety of biological imaging scenarios. CLAM is a new form of 3D fluorescence microscopy, which collects all the fluorescence signals from the entire illuminated volume of a sample in parallel. Its key innovation is the way it uses a concept called “infinity mirror” to generate an array of parallel slices of laser light (“light sheets”) for three-dimensional imaging without the need for repetitive scanning and with much gentler illumination than the state-of-the-art techniques. CLAM could be applied to existing light sheet fluorescence microscopes, with minimal system modifications.</description><subject>639/624/1107/328/2237</subject><subject>639/624/1111/55</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Fluorescence microscopy</subject><subject>Lasers</subject><subject>Light</subject><subject>Microparticles</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photobleaching</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Scanning</subject><subject>Three dimensional imaging</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1rFTEUDaLYUvsD3MiAGzdT8_2xEaSoFQq60HXIZO68SclMnslM5fnrzfBqrYIGQgL3nHPvuQeh5wRfEMz068IJU6rFFNfLRasfoVOKuWqVYPrxg_8JOi_lBtdjOMFaPUUnjBjDCJWnaPzssosRYvgBfXOb4jrBkoNvhrimDMXD7KGZgs-p-LQ_NN_DMjauyeDTPITdml0XofGpr_Qw-zRChnlpYtiNS1tGgKVxObvDM_RkcLHA-d17hr6-f_fl8qq9_vTh4-Xb69Zzo5dWck69Ip5yYE5KT73QoDuNiel55xTnjBrSqW6QkgyGGcxNN3DNewkges7O0Juj7n7tJujr_Es1aPc5TC4fbHLB_lmZw2h36dZKowimqgq8uhPI6dsKZbFTqGuI0c2Q1mIp45oSocTW6-Vf0Ju05rnas1QISbiRVPwXxXh1w4XetMgRtW26ZBjuRybYboHbY-C2Bm63wK2unBcPvd4zfsVbAfQIKLU07yD_bv1v1Z-0ybco</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Ren, Yu-Xuan</creator><creator>Wu, Jianglai</creator><creator>Lai, Queenie T. K.</creator><creator>Lai, Hei Ming</creator><creator>Siu, Dickson M. D.</creator><creator>Wu, Wutian</creator><creator>Wong, Kenneth K. Y.</creator><creator>Tsia, Kevin K.</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6394-9657</orcidid><orcidid>https://orcid.org/0000-0003-3668-3539</orcidid><orcidid>https://orcid.org/0000-0002-4641-3148</orcidid></search><sort><creationdate>20200120</creationdate><title>Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array</title><author>Ren, Yu-Xuan ; Wu, Jianglai ; Lai, Queenie T. K. ; Lai, Hei Ming ; Siu, Dickson M. D. ; Wu, Wutian ; Wong, Kenneth K. Y. ; Tsia, Kevin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-6442c71c24e3a66c2c58e8b8019d4ba7443291b7bf661f939049bf484d6ee5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/1107/328/2237</topic><topic>639/624/1111/55</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Fluorescence microscopy</topic><topic>Lasers</topic><topic>Light</topic><topic>Microparticles</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photobleaching</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Scanning</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yu-Xuan</creatorcontrib><creatorcontrib>Wu, Jianglai</creatorcontrib><creatorcontrib>Lai, Queenie T. K.</creatorcontrib><creatorcontrib>Lai, Hei Ming</creatorcontrib><creatorcontrib>Siu, Dickson M. D.</creatorcontrib><creatorcontrib>Wu, Wutian</creatorcontrib><creatorcontrib>Wong, Kenneth K. Y.</creatorcontrib><creatorcontrib>Tsia, Kevin K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Light, science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yu-Xuan</au><au>Wu, Jianglai</au><au>Lai, Queenie T. K.</au><au>Lai, Hei Ming</au><au>Siu, Dickson M. D.</au><au>Wu, Wutian</au><au>Wong, Kenneth K. Y.</au><au>Tsia, Kevin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array</atitle><jtitle>Light, science & applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2020-01-20</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>8</spage><epage>8</epage><pages>8-8</pages><artnum>8</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>Parallelized fluorescence imaging has been a long-standing pursuit that can address the unmet need for a comprehensive three-dimensional (3D) visualization of dynamical biological processes with minimal photodamage. However, the available approaches are limited to incomplete parallelization in only two dimensions or sparse sampling in three dimensions. We hereby develop a novel fluorescence imaging approach, called coded light-sheet array microscopy (CLAM), which allows complete parallelized 3D imaging without mechanical scanning. Harnessing the concept of an “infinity mirror”, CLAM generates a light-sheet array with controllable sheet density and degree of coherence. Thus, CLAM circumvents the common complications of multiple coherent light-sheet generation in terms of dedicated wavefront engineering and mechanical dithering/scanning. Moreover, the encoding of multiplexed optical sections in CLAM allows the synchronous capture of all sectioned images within the imaged volume. We demonstrate the utility of CLAM in different imaging scenarios, including a light-scattering medium, an optically cleared tissue, and microparticles in fluidic flow. CLAM can maximize the signal-to-noise ratio and the spatial duty cycle, and also provides a further reduction in photobleaching compared to the major scanning-based 3D imaging systems. The flexible implementation of CLAM regarding both hardware and software ensures compatibility with any light-sheet imaging modality and could thus be instrumental in a multitude of areas in biological research.
Microscopy: parallel light sheets give a gentler view
A new imaging technique called coded light-sheet array microscopy (CLAM) brings an improved ability to visualize biological samples in three dimensions while minimizing the damage. A research team, led by Kevin Tsia at the University of Hong Kong, developed the technique and demonstrated its use on a variety of biological imaging scenarios. CLAM is a new form of 3D fluorescence microscopy, which collects all the fluorescence signals from the entire illuminated volume of a sample in parallel. Its key innovation is the way it uses a concept called “infinity mirror” to generate an array of parallel slices of laser light (“light sheets”) for three-dimensional imaging without the need for repetitive scanning and with much gentler illumination than the state-of-the-art techniques. CLAM could be applied to existing light sheet fluorescence microscopes, with minimal system modifications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31993126</pmid><doi>10.1038/s41377-020-0245-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6394-9657</orcidid><orcidid>https://orcid.org/0000-0003-3668-3539</orcidid><orcidid>https://orcid.org/0000-0002-4641-3148</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-7538 |
ispartof | Light, science & applications, 2020-01, Vol.9 (1), p.8-8, Article 8 |
issn | 2047-7538 2095-5545 2047-7538 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6971027 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 639/624/1107/328/2237 639/624/1111/55 Applied and Technical Physics Atomic Classical and Continuum Physics Fluorescence microscopy Lasers Light Microparticles Microscopes Microscopy Molecular Optical and Plasma Physics Optical Devices Optics Photobleaching Photonics Physics Physics and Astronomy Scanning Three dimensional imaging |
title | Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelized%20volumetric%20fluorescence%20microscopy%20with%20a%20reconfigurable%20coded%20incoherent%20light-sheet%20array&rft.jtitle=Light,%20science%20&%20applications&rft.au=Ren,%20Yu-Xuan&rft.date=2020-01-20&rft.volume=9&rft.issue=1&rft.spage=8&rft.epage=8&rft.pages=8-8&rft.artnum=8&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-020-0245-8&rft_dat=%3Cproquest_pubme%3E2342914584%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342914584&rft_id=info:pmid/31993126&rfr_iscdi=true |