Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning

Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for fast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2020-01, Vol.11 (1), p.186-199
Hauptverfasser: Huttunen, Mikko J, Hristu, Radu, Dumitru, Adrian, Floroiu, Iustin, Costache, Mariana, Stanciu, Stefan G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 1
container_start_page 186
container_title Biomedical optics express
container_volume 11
creator Huttunen, Mikko J
Hristu, Radu
Dumitru, Adrian
Floroiu, Iustin
Costache, Mariana
Stanciu, Stefan G
description Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both or . Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.
doi_str_mv 10.1364/BOE.11.000186
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6968761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350368092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4f8c6a359f1ea3c2f9ebbfd126ecc15f2fb40b90d3c0566f2347658f5a98b4a73</originalsourceid><addsrcrecordid>eNpVkc9PwyAUx4nR6KI7ejUcvXRCKZReTHSZP5IZL3omlIJlaUstVLP4z8vcNPP0SL6f9-W99wXgHKMZJiy7un1ezDCeIYQwZwdgkmLKkhxxerj3PgFT71eRQVmWI8KPwQlJEUYUFRPw9TQ2wfa1C66DrVWD88r1a-gMDLWGlR5ap3u7qbKBq7FTwUZSdhWUY3CtDLqCUe6CNVbJHzH2VmvfN9IHq2Cw3o_aw08b6uine9hoOXS2ezsDR0Y2Xk939RS83i1e5g_J8vn-cX6zTBTheUgywxWThBYGa0lUagpdlqbCKdNKYWpSU2aoLFBFFKKMmZRkOaPcUFnwMpM5OQXXW99-LFtdqTjsIBvRD7aVw1o4acV_pbO1eHMfghWM5wxHg8udweDe4y5BtNYr3TSy0270IiUUEcZRkUY02aKbS_pBm79vMBKbzETMTGAstplF_mJ_tj_6NyHyDYqiloo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350368092</pqid></control><display><type>article</type><title>Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning</title><source>PubMed (Medline)</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Huttunen, Mikko J ; Hristu, Radu ; Dumitru, Adrian ; Floroiu, Iustin ; Costache, Mariana ; Stanciu, Stefan G</creator><creatorcontrib>Huttunen, Mikko J ; Hristu, Radu ; Dumitru, Adrian ; Floroiu, Iustin ; Costache, Mariana ; Stanciu, Stefan G</creatorcontrib><description>Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both or . Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.11.000186</identifier><identifier>PMID: 32010509</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><ispartof>Biomedical optics express, 2020-01, Vol.11 (1), p.186-199</ispartof><rights>2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.</rights><rights>2019 Optical Society of America under the terms of the 2019 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4f8c6a359f1ea3c2f9ebbfd126ecc15f2fb40b90d3c0566f2347658f5a98b4a73</citedby><cites>FETCH-LOGICAL-c387t-4f8c6a359f1ea3c2f9ebbfd126ecc15f2fb40b90d3c0566f2347658f5a98b4a73</cites><orcidid>0000-0001-8051-8253 ; 0000-0002-1676-3040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968761/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968761/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32010509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huttunen, Mikko J</creatorcontrib><creatorcontrib>Hristu, Radu</creatorcontrib><creatorcontrib>Dumitru, Adrian</creatorcontrib><creatorcontrib>Floroiu, Iustin</creatorcontrib><creatorcontrib>Costache, Mariana</creatorcontrib><creatorcontrib>Stanciu, Stefan G</creatorcontrib><title>Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both or . Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkc9PwyAUx4nR6KI7ejUcvXRCKZReTHSZP5IZL3omlIJlaUstVLP4z8vcNPP0SL6f9-W99wXgHKMZJiy7un1ezDCeIYQwZwdgkmLKkhxxerj3PgFT71eRQVmWI8KPwQlJEUYUFRPw9TQ2wfa1C66DrVWD88r1a-gMDLWGlR5ap3u7qbKBq7FTwUZSdhWUY3CtDLqCUe6CNVbJHzH2VmvfN9IHq2Cw3o_aw08b6uine9hoOXS2ezsDR0Y2Xk939RS83i1e5g_J8vn-cX6zTBTheUgywxWThBYGa0lUagpdlqbCKdNKYWpSU2aoLFBFFKKMmZRkOaPcUFnwMpM5OQXXW99-LFtdqTjsIBvRD7aVw1o4acV_pbO1eHMfghWM5wxHg8udweDe4y5BtNYr3TSy0270IiUUEcZRkUY02aKbS_pBm79vMBKbzETMTGAstplF_mJ_tj_6NyHyDYqiloo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Huttunen, Mikko J</creator><creator>Hristu, Radu</creator><creator>Dumitru, Adrian</creator><creator>Floroiu, Iustin</creator><creator>Costache, Mariana</creator><creator>Stanciu, Stefan G</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8051-8253</orcidid><orcidid>https://orcid.org/0000-0002-1676-3040</orcidid></search><sort><creationdate>20200101</creationdate><title>Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning</title><author>Huttunen, Mikko J ; Hristu, Radu ; Dumitru, Adrian ; Floroiu, Iustin ; Costache, Mariana ; Stanciu, Stefan G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4f8c6a359f1ea3c2f9ebbfd126ecc15f2fb40b90d3c0566f2347658f5a98b4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huttunen, Mikko J</creatorcontrib><creatorcontrib>Hristu, Radu</creatorcontrib><creatorcontrib>Dumitru, Adrian</creatorcontrib><creatorcontrib>Floroiu, Iustin</creatorcontrib><creatorcontrib>Costache, Mariana</creatorcontrib><creatorcontrib>Stanciu, Stefan G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huttunen, Mikko J</au><au>Hristu, Radu</au><au>Dumitru, Adrian</au><au>Floroiu, Iustin</au><au>Costache, Mariana</au><au>Stanciu, Stefan G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>186</spage><epage>199</epage><pages>186-199</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both or . Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>32010509</pmid><doi>10.1364/BOE.11.000186</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8051-8253</orcidid><orcidid>https://orcid.org/0000-0002-1676-3040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2020-01, Vol.11 (1), p.186-199
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6968761
source PubMed (Medline); Directory of Open Access Journals; EZB Electronic Journals Library
title Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphoton%20microscopy%20of%20the%20dermoepidermal%20junction%20and%20automated%20identification%20of%20dysplastic%20tissues%20with%20deep%20learning&rft.jtitle=Biomedical%20optics%20express&rft.au=Huttunen,%20Mikko%20J&rft.date=2020-01-01&rft.volume=11&rft.issue=1&rft.spage=186&rft.epage=199&rft.pages=186-199&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.11.000186&rft_dat=%3Cproquest_pubme%3E2350368092%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350368092&rft_id=info:pmid/32010509&rfr_iscdi=true