Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning
Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for fast...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2020-01, Vol.11 (1), p.186-199 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | Biomedical optics express |
container_volume | 11 |
creator | Huttunen, Mikko J Hristu, Radu Dumitru, Adrian Floroiu, Iustin Costache, Mariana Stanciu, Stefan G |
description | Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both
or
. Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for
skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches. |
doi_str_mv | 10.1364/BOE.11.000186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6968761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350368092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4f8c6a359f1ea3c2f9ebbfd126ecc15f2fb40b90d3c0566f2347658f5a98b4a73</originalsourceid><addsrcrecordid>eNpVkc9PwyAUx4nR6KI7ejUcvXRCKZReTHSZP5IZL3omlIJlaUstVLP4z8vcNPP0SL6f9-W99wXgHKMZJiy7un1ezDCeIYQwZwdgkmLKkhxxerj3PgFT71eRQVmWI8KPwQlJEUYUFRPw9TQ2wfa1C66DrVWD88r1a-gMDLWGlR5ap3u7qbKBq7FTwUZSdhWUY3CtDLqCUe6CNVbJHzH2VmvfN9IHq2Cw3o_aw08b6uine9hoOXS2ezsDR0Y2Xk939RS83i1e5g_J8vn-cX6zTBTheUgywxWThBYGa0lUagpdlqbCKdNKYWpSU2aoLFBFFKKMmZRkOaPcUFnwMpM5OQXXW99-LFtdqTjsIBvRD7aVw1o4acV_pbO1eHMfghWM5wxHg8udweDe4y5BtNYr3TSy0270IiUUEcZRkUY02aKbS_pBm79vMBKbzETMTGAstplF_mJ_tj_6NyHyDYqiloo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350368092</pqid></control><display><type>article</type><title>Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning</title><source>PubMed (Medline)</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Huttunen, Mikko J ; Hristu, Radu ; Dumitru, Adrian ; Floroiu, Iustin ; Costache, Mariana ; Stanciu, Stefan G</creator><creatorcontrib>Huttunen, Mikko J ; Hristu, Radu ; Dumitru, Adrian ; Floroiu, Iustin ; Costache, Mariana ; Stanciu, Stefan G</creatorcontrib><description>Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both
or
. Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for
skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.11.000186</identifier><identifier>PMID: 32010509</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><ispartof>Biomedical optics express, 2020-01, Vol.11 (1), p.186-199</ispartof><rights>2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.</rights><rights>2019 Optical Society of America under the terms of the 2019 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4f8c6a359f1ea3c2f9ebbfd126ecc15f2fb40b90d3c0566f2347658f5a98b4a73</citedby><cites>FETCH-LOGICAL-c387t-4f8c6a359f1ea3c2f9ebbfd126ecc15f2fb40b90d3c0566f2347658f5a98b4a73</cites><orcidid>0000-0001-8051-8253 ; 0000-0002-1676-3040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968761/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968761/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32010509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huttunen, Mikko J</creatorcontrib><creatorcontrib>Hristu, Radu</creatorcontrib><creatorcontrib>Dumitru, Adrian</creatorcontrib><creatorcontrib>Floroiu, Iustin</creatorcontrib><creatorcontrib>Costache, Mariana</creatorcontrib><creatorcontrib>Stanciu, Stefan G</creatorcontrib><title>Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both
or
. Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for
skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkc9PwyAUx4nR6KI7ejUcvXRCKZReTHSZP5IZL3omlIJlaUstVLP4z8vcNPP0SL6f9-W99wXgHKMZJiy7un1ezDCeIYQwZwdgkmLKkhxxerj3PgFT71eRQVmWI8KPwQlJEUYUFRPw9TQ2wfa1C66DrVWD88r1a-gMDLWGlR5ap3u7qbKBq7FTwUZSdhWUY3CtDLqCUe6CNVbJHzH2VmvfN9IHq2Cw3o_aw08b6uine9hoOXS2ezsDR0Y2Xk939RS83i1e5g_J8vn-cX6zTBTheUgywxWThBYGa0lUagpdlqbCKdNKYWpSU2aoLFBFFKKMmZRkOaPcUFnwMpM5OQXXW99-LFtdqTjsIBvRD7aVw1o4acV_pbO1eHMfghWM5wxHg8udweDe4y5BtNYr3TSy0270IiUUEcZRkUY02aKbS_pBm79vMBKbzETMTGAstplF_mJ_tj_6NyHyDYqiloo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Huttunen, Mikko J</creator><creator>Hristu, Radu</creator><creator>Dumitru, Adrian</creator><creator>Floroiu, Iustin</creator><creator>Costache, Mariana</creator><creator>Stanciu, Stefan G</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8051-8253</orcidid><orcidid>https://orcid.org/0000-0002-1676-3040</orcidid></search><sort><creationdate>20200101</creationdate><title>Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning</title><author>Huttunen, Mikko J ; Hristu, Radu ; Dumitru, Adrian ; Floroiu, Iustin ; Costache, Mariana ; Stanciu, Stefan G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4f8c6a359f1ea3c2f9ebbfd126ecc15f2fb40b90d3c0566f2347658f5a98b4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huttunen, Mikko J</creatorcontrib><creatorcontrib>Hristu, Radu</creatorcontrib><creatorcontrib>Dumitru, Adrian</creatorcontrib><creatorcontrib>Floroiu, Iustin</creatorcontrib><creatorcontrib>Costache, Mariana</creatorcontrib><creatorcontrib>Stanciu, Stefan G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huttunen, Mikko J</au><au>Hristu, Radu</au><au>Dumitru, Adrian</au><au>Floroiu, Iustin</au><au>Costache, Mariana</au><au>Stanciu, Stefan G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>186</spage><epage>199</epage><pages>186-199</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both
or
. Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for
skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>32010509</pmid><doi>10.1364/BOE.11.000186</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8051-8253</orcidid><orcidid>https://orcid.org/0000-0002-1676-3040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2020-01, Vol.11 (1), p.186-199 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6968761 |
source | PubMed (Medline); Directory of Open Access Journals; EZB Electronic Journals Library |
title | Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphoton%20microscopy%20of%20the%20dermoepidermal%20junction%20and%20automated%20identification%20of%20dysplastic%20tissues%20with%20deep%20learning&rft.jtitle=Biomedical%20optics%20express&rft.au=Huttunen,%20Mikko%20J&rft.date=2020-01-01&rft.volume=11&rft.issue=1&rft.spage=186&rft.epage=199&rft.pages=186-199&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.11.000186&rft_dat=%3Cproquest_pubme%3E2350368092%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350368092&rft_id=info:pmid/32010509&rfr_iscdi=true |