OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo
Targeted nanocarriers have shown great promise in drug delivery because of optimized drug behavior and improved therapeutic efficacy. How to improve the targeting efficiency of nanocarriers for the maximum possible drug delivery is a critical issue. Here we developed L-carnitine-conjugated nanoparti...
Gespeichert in:
Veröffentlicht in: | Drug delivery 2020-01, Vol.27 (1), p.170-179 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 1 |
container_start_page | 170 |
container_title | Drug delivery |
container_volume | 27 |
creator | Kou, Longfa Sun, Rui Xiao, Shuyi Cui, Xiao Sun, Jin Ganapathy, Vadivel Yao, Qing Chen, Ruijie |
description | Targeted nanocarriers have shown great promise in drug delivery because of optimized drug behavior and improved therapeutic efficacy. How to improve the targeting efficiency of nanocarriers for the maximum possible drug delivery is a critical issue. Here we developed L-carnitine-conjugated nanoparticles targeting the carnitine transporter OCTN2 on enterocytes for improved oral absorption. As a variable, we introduced various lengths of the polyethylene glycol linker (0, 500, 1000, and 2000) between the nanoparticle surface and the ligand (CNP, C5NP, C10NP and C20NP) to improve the ligand flexibility, and consequently for more efficient interaction with the transporter, to enhance the oral delivery of the cargo load into cells. An increased absorption was observed in cellular uptake in vitro and in intestinal perfusion assay in situ when the polyethylene glycol was introduced to link L-carnitine to the nanoparticles; the highest absorption was achieved with C10NP. In contrast, the linker decreased the absorption efficiency in vivo. As the presence or absence of the mucus layer was the primary difference between in vitro/in situ versus in vivo, the presence of this layer was the likely reason for this differential effect. In summary, the size of the polyethylene glycol linker improved the absorption in vitro and in situ, but interfered with the absorption in vivo. Even though this strategy of increasing the ligand flexibility with the variable size of the polyethylene glycol failed to increase oral absorption in vivo, this approach is likely to be useful for enhanced cellular uptake following intravenous administration of the nanocarriers. |
doi_str_mv | 10.1080/10717544.2019.1710623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6968687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f2f25a7e00d479a95528fbce637b4cd</doaj_id><sourcerecordid>2477990764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-30c7abff5af77e3dd26137041c6127adf1bfe30c338b175ae1ee5b1fa7d100233</originalsourceid><addsrcrecordid>eNqNks1uEzEUhUcIREvhEUCWWNIE2_PjGRYVKOKnUkU3ZW157OvExbGDx5MSnoY1j8GTcUPSQDeIlS37u-fee3SK4imjU0Zb-pJRwURdVVNOWTdlgtGGl_eKY1ZzNqFVU93HOzKTLXRUPBqGa0ppy3j9sDgqWcdKwavj4sfl7Oojn2SV5pDBkKBCXKmUnfYwEBsTiUl5YsC7NaQNiZaslPYuq6_gXxHjrIUEITuE3BK_8hbJCyCr6DeQFxsPAcjcb3T0xLvwGRIZ3DcgMRCTxvkfaRd-fl-7nOIpXpHJ4ylRwezf1_Fx8cAqP8CT_XlSfHr39mr2YXJx-f589uZiouuG50lJtVC9tbWyQkBpDG9wV1ox3TAulLGst4BQWbY9OqiAAdQ9s0oYRikvy5PifKdrorqWq-SWKm1kVE7-fohpLvcGSWG55bUSQKmpRKe6uuat7TU0pegrbVDrbKe1GvslGI1OoZ13RO_-BLeQ87iWTde0TStQ4PleIMUvIwxZXscxBdxf8kqIrqOiqZCqd5ROcRgS2EMHRuU2LvI2LnIbF7mPC9Y9-3u8Q9VtPhBod8AN9NEO2kHQcMAwUDXF9g0aRymbYSqyi2EWx5Cx9MX_lyL9eke7gKFbqpuYvJFZbXxMNqmg3YBT_XOZX_Mu9Wc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477990764</pqid></control><display><type>article</type><title>OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via Taylor & Francis (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kou, Longfa ; Sun, Rui ; Xiao, Shuyi ; Cui, Xiao ; Sun, Jin ; Ganapathy, Vadivel ; Yao, Qing ; Chen, Ruijie</creator><creatorcontrib>Kou, Longfa ; Sun, Rui ; Xiao, Shuyi ; Cui, Xiao ; Sun, Jin ; Ganapathy, Vadivel ; Yao, Qing ; Chen, Ruijie</creatorcontrib><description>Targeted nanocarriers have shown great promise in drug delivery because of optimized drug behavior and improved therapeutic efficacy. How to improve the targeting efficiency of nanocarriers for the maximum possible drug delivery is a critical issue. Here we developed L-carnitine-conjugated nanoparticles targeting the carnitine transporter OCTN2 on enterocytes for improved oral absorption. As a variable, we introduced various lengths of the polyethylene glycol linker (0, 500, 1000, and 2000) between the nanoparticle surface and the ligand (CNP, C5NP, C10NP and C20NP) to improve the ligand flexibility, and consequently for more efficient interaction with the transporter, to enhance the oral delivery of the cargo load into cells. An increased absorption was observed in cellular uptake in vitro and in intestinal perfusion assay in situ when the polyethylene glycol was introduced to link L-carnitine to the nanoparticles; the highest absorption was achieved with C10NP. In contrast, the linker decreased the absorption efficiency in vivo. As the presence or absence of the mucus layer was the primary difference between in vitro/in situ versus in vivo, the presence of this layer was the likely reason for this differential effect. In summary, the size of the polyethylene glycol linker improved the absorption in vitro and in situ, but interfered with the absorption in vivo. Even though this strategy of increasing the ligand flexibility with the variable size of the polyethylene glycol failed to increase oral absorption in vivo, this approach is likely to be useful for enhanced cellular uptake following intravenous administration of the nanocarriers.</description><identifier>ISSN: 1071-7544</identifier><identifier>EISSN: 1521-0464</identifier><identifier>DOI: 10.1080/10717544.2019.1710623</identifier><identifier>PMID: 31913724</identifier><language>eng</language><publisher>ABINGDON: Taylor & Francis</publisher><subject>Administration, Oral ; Animals ; Caco-2 Cells ; Carnitine - administration & dosage ; Carnitine - pharmacokinetics ; Carnitine - pharmacology ; Cell Survival - drug effects ; Drug Carriers - chemistry ; Drug Liberation ; Drug Stability ; Enterocytes ; Humans ; Life Sciences & Biomedicine ; ligand flexibility ; Ligands ; Male ; Nanoparticles ; Nanoparticles - chemistry ; OCTN2 ; oral absorption ; Paclitaxel - administration & dosage ; Paclitaxel - pharmacokinetics ; Paclitaxel - pharmacology ; Particle Size ; Pharmacology & Pharmacy ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Rats ; Rats, Sprague-Dawley ; Science & Technology ; Solute Carrier Family 22 Member 5 - drug effects ; targeting efficiency</subject><ispartof>Drug delivery, 2020-01, Vol.27 (1), p.170-179</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>23</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000506436100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c562t-30c7abff5af77e3dd26137041c6127adf1bfe30c338b175ae1ee5b1fa7d100233</citedby><cites>FETCH-LOGICAL-c562t-30c7abff5af77e3dd26137041c6127adf1bfe30c338b175ae1ee5b1fa7d100233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968687/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968687/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27507,27929,27930,28253,53796,53798,59148,59149</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31913724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kou, Longfa</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Xiao, Shuyi</creatorcontrib><creatorcontrib>Cui, Xiao</creatorcontrib><creatorcontrib>Sun, Jin</creatorcontrib><creatorcontrib>Ganapathy, Vadivel</creatorcontrib><creatorcontrib>Yao, Qing</creatorcontrib><creatorcontrib>Chen, Ruijie</creatorcontrib><title>OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo</title><title>Drug delivery</title><addtitle>DRUG DELIV</addtitle><addtitle>Drug Deliv</addtitle><description>Targeted nanocarriers have shown great promise in drug delivery because of optimized drug behavior and improved therapeutic efficacy. How to improve the targeting efficiency of nanocarriers for the maximum possible drug delivery is a critical issue. Here we developed L-carnitine-conjugated nanoparticles targeting the carnitine transporter OCTN2 on enterocytes for improved oral absorption. As a variable, we introduced various lengths of the polyethylene glycol linker (0, 500, 1000, and 2000) between the nanoparticle surface and the ligand (CNP, C5NP, C10NP and C20NP) to improve the ligand flexibility, and consequently for more efficient interaction with the transporter, to enhance the oral delivery of the cargo load into cells. An increased absorption was observed in cellular uptake in vitro and in intestinal perfusion assay in situ when the polyethylene glycol was introduced to link L-carnitine to the nanoparticles; the highest absorption was achieved with C10NP. In contrast, the linker decreased the absorption efficiency in vivo. As the presence or absence of the mucus layer was the primary difference between in vitro/in situ versus in vivo, the presence of this layer was the likely reason for this differential effect. In summary, the size of the polyethylene glycol linker improved the absorption in vitro and in situ, but interfered with the absorption in vivo. Even though this strategy of increasing the ligand flexibility with the variable size of the polyethylene glycol failed to increase oral absorption in vivo, this approach is likely to be useful for enhanced cellular uptake following intravenous administration of the nanocarriers.</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Caco-2 Cells</subject><subject>Carnitine - administration & dosage</subject><subject>Carnitine - pharmacokinetics</subject><subject>Carnitine - pharmacology</subject><subject>Cell Survival - drug effects</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Liberation</subject><subject>Drug Stability</subject><subject>Enterocytes</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>ligand flexibility</subject><subject>Ligands</subject><subject>Male</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>OCTN2</subject><subject>oral absorption</subject><subject>Paclitaxel - administration & dosage</subject><subject>Paclitaxel - pharmacokinetics</subject><subject>Paclitaxel - pharmacology</subject><subject>Particle Size</subject><subject>Pharmacology & Pharmacy</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Science & Technology</subject><subject>Solute Carrier Family 22 Member 5 - drug effects</subject><subject>targeting efficiency</subject><issn>1071-7544</issn><issn>1521-0464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1uEzEUhUcIREvhEUCWWNIE2_PjGRYVKOKnUkU3ZW157OvExbGDx5MSnoY1j8GTcUPSQDeIlS37u-fee3SK4imjU0Zb-pJRwURdVVNOWTdlgtGGl_eKY1ZzNqFVU93HOzKTLXRUPBqGa0ppy3j9sDgqWcdKwavj4sfl7Oojn2SV5pDBkKBCXKmUnfYwEBsTiUl5YsC7NaQNiZaslPYuq6_gXxHjrIUEITuE3BK_8hbJCyCr6DeQFxsPAcjcb3T0xLvwGRIZ3DcgMRCTxvkfaRd-fl-7nOIpXpHJ4ylRwezf1_Fx8cAqP8CT_XlSfHr39mr2YXJx-f589uZiouuG50lJtVC9tbWyQkBpDG9wV1ox3TAulLGst4BQWbY9OqiAAdQ9s0oYRikvy5PifKdrorqWq-SWKm1kVE7-fohpLvcGSWG55bUSQKmpRKe6uuat7TU0pegrbVDrbKe1GvslGI1OoZ13RO_-BLeQ87iWTde0TStQ4PleIMUvIwxZXscxBdxf8kqIrqOiqZCqd5ROcRgS2EMHRuU2LvI2LnIbF7mPC9Y9-3u8Q9VtPhBod8AN9NEO2kHQcMAwUDXF9g0aRymbYSqyi2EWx5Cx9MX_lyL9eke7gKFbqpuYvJFZbXxMNqmg3YBT_XOZX_Mu9Wc</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Kou, Longfa</creator><creator>Sun, Rui</creator><creator>Xiao, Shuyi</creator><creator>Cui, Xiao</creator><creator>Sun, Jin</creator><creator>Ganapathy, Vadivel</creator><creator>Yao, Qing</creator><creator>Chen, Ruijie</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo</title><author>Kou, Longfa ; Sun, Rui ; Xiao, Shuyi ; Cui, Xiao ; Sun, Jin ; Ganapathy, Vadivel ; Yao, Qing ; Chen, Ruijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-30c7abff5af77e3dd26137041c6127adf1bfe30c338b175ae1ee5b1fa7d100233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Caco-2 Cells</topic><topic>Carnitine - administration & dosage</topic><topic>Carnitine - pharmacokinetics</topic><topic>Carnitine - pharmacology</topic><topic>Cell Survival - drug effects</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Liberation</topic><topic>Drug Stability</topic><topic>Enterocytes</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>ligand flexibility</topic><topic>Ligands</topic><topic>Male</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>OCTN2</topic><topic>oral absorption</topic><topic>Paclitaxel - administration & dosage</topic><topic>Paclitaxel - pharmacokinetics</topic><topic>Paclitaxel - pharmacology</topic><topic>Particle Size</topic><topic>Pharmacology & Pharmacy</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Science & Technology</topic><topic>Solute Carrier Family 22 Member 5 - drug effects</topic><topic>targeting efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Longfa</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Xiao, Shuyi</creatorcontrib><creatorcontrib>Cui, Xiao</creatorcontrib><creatorcontrib>Sun, Jin</creatorcontrib><creatorcontrib>Ganapathy, Vadivel</creatorcontrib><creatorcontrib>Yao, Qing</creatorcontrib><creatorcontrib>Chen, Ruijie</creatorcontrib><collection>Access via Taylor & Francis (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Drug delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Longfa</au><au>Sun, Rui</au><au>Xiao, Shuyi</au><au>Cui, Xiao</au><au>Sun, Jin</au><au>Ganapathy, Vadivel</au><au>Yao, Qing</au><au>Chen, Ruijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo</atitle><jtitle>Drug delivery</jtitle><stitle>DRUG DELIV</stitle><addtitle>Drug Deliv</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><spage>170</spage><epage>179</epage><pages>170-179</pages><issn>1071-7544</issn><eissn>1521-0464</eissn><abstract>Targeted nanocarriers have shown great promise in drug delivery because of optimized drug behavior and improved therapeutic efficacy. How to improve the targeting efficiency of nanocarriers for the maximum possible drug delivery is a critical issue. Here we developed L-carnitine-conjugated nanoparticles targeting the carnitine transporter OCTN2 on enterocytes for improved oral absorption. As a variable, we introduced various lengths of the polyethylene glycol linker (0, 500, 1000, and 2000) between the nanoparticle surface and the ligand (CNP, C5NP, C10NP and C20NP) to improve the ligand flexibility, and consequently for more efficient interaction with the transporter, to enhance the oral delivery of the cargo load into cells. An increased absorption was observed in cellular uptake in vitro and in intestinal perfusion assay in situ when the polyethylene glycol was introduced to link L-carnitine to the nanoparticles; the highest absorption was achieved with C10NP. In contrast, the linker decreased the absorption efficiency in vivo. As the presence or absence of the mucus layer was the primary difference between in vitro/in situ versus in vivo, the presence of this layer was the likely reason for this differential effect. In summary, the size of the polyethylene glycol linker improved the absorption in vitro and in situ, but interfered with the absorption in vivo. Even though this strategy of increasing the ligand flexibility with the variable size of the polyethylene glycol failed to increase oral absorption in vivo, this approach is likely to be useful for enhanced cellular uptake following intravenous administration of the nanocarriers.</abstract><cop>ABINGDON</cop><pub>Taylor & Francis</pub><pmid>31913724</pmid><doi>10.1080/10717544.2019.1710623</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1071-7544 |
ispartof | Drug delivery, 2020-01, Vol.27 (1), p.170-179 |
issn | 1071-7544 1521-0464 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6968687 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via Taylor & Francis (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Administration, Oral Animals Caco-2 Cells Carnitine - administration & dosage Carnitine - pharmacokinetics Carnitine - pharmacology Cell Survival - drug effects Drug Carriers - chemistry Drug Liberation Drug Stability Enterocytes Humans Life Sciences & Biomedicine ligand flexibility Ligands Male Nanoparticles Nanoparticles - chemistry OCTN2 oral absorption Paclitaxel - administration & dosage Paclitaxel - pharmacokinetics Paclitaxel - pharmacology Particle Size Pharmacology & Pharmacy Polyethylene glycol Polyethylene Glycols - chemistry Rats Rats, Sprague-Dawley Science & Technology Solute Carrier Family 22 Member 5 - drug effects targeting efficiency |
title | OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OCTN2-targeted%20nanoparticles%20for%20oral%20delivery%20of%20paclitaxel:%20differential%20impact%20of%20the%20polyethylene%20glycol%20linker%20size%20on%20drug%20delivery%20in%C2%A0vitro,%20in%20situ,%20and%20in%C2%A0vivo&rft.jtitle=Drug%20delivery&rft.au=Kou,%20Longfa&rft.date=2020-01-01&rft.volume=27&rft.issue=1&rft.spage=170&rft.epage=179&rft.pages=170-179&rft.issn=1071-7544&rft.eissn=1521-0464&rft_id=info:doi/10.1080/10717544.2019.1710623&rft_dat=%3Cproquest_pubme%3E2477990764%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477990764&rft_id=info:pmid/31913724&rft_doaj_id=oai_doaj_org_article_7f2f25a7e00d479a95528fbce637b4cd&rfr_iscdi=true |