Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory X-ray source
Most measures of lung health independently characterise either global lung function or regional lung structure. The ability to measure airflow and lung function regionally would provide a more specific and physiologically focused means by which to assess and track lung disease in both pre-clinical a...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-01, Vol.10 (1), p.447-447, Article 447 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | 1 |
container_start_page | 447 |
container_title | Scientific reports |
container_volume | 10 |
creator | Murrie, Rhiannon P. Werdiger, Freda Donnelley, Martin Lin, Yu-wei Carnibella, Richard P. Samarage, Chaminda R. Pinar, Isaac Preissner, Melissa Wang, Jiping Li, Jian Morgan, Kaye S. Parsons, David W. Dubsky, Stephen Fouras, Andreas |
description | Most measures of lung health independently characterise either global lung function or regional lung structure. The ability to measure airflow and lung function regionally would provide a more specific and physiologically focused means by which to assess and track lung disease in both pre-clinical and clinical settings. One approach for achieving regional lung function measurement is via phase contrast X-ray imaging (PCXI), which has been shown to provide highly sensitive, high-resolution images of the lungs and airways in small animals. The detailed images provided by PCXI allow the application of four-dimensional X-ray velocimetry (4DxV) to track lung tissue motion and provide quantitative information on regional lung function. However, until recently synchrotron facilities were required to produce the highly coherent, high-flux X-rays that are required to achieve lung PCXI at a high enough frame rate to capture lung motion. This paper presents the first translation of 4DxV technology from a synchrotron facility into a laboratory setting by using a liquid-metal jet microfocus X-ray source. This source can provide the coherence required for PCXI and enough X-ray flux to image the dynamics of lung tissue motion during the respiratory cycle, which enables production of images compatible with 4DxV analysis. We demonstrate the measurements that can be captured
in vivo
in live mice using this technique, including regional airflow and tissue expansion. These measurements can inform physiological and biomedical research studies in small animals and assist in the development of new respiratory treatments. |
doi_str_mv | 10.1038/s41598-019-57376-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6965186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342738251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-97f2e4676618f641754bdbd09691375847bcc32e54696d28bf86ea4b2c0f2bab3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhgdRbGn7B1xIwI2b1HxPshGkVC0UCkXBXUgyyZiSmdRk5pb7783trbW6aBb5Os95k3PernuD0SlGVH6oDHMlIcIK8p72At696A4JYhwSSsjLJ_uD7qTWG9QGJ4ph9bo7oFgxRQg77JZrbxJc4uRBnMEmbjKIkxnjPIIcQPFjzLNJIK3tIqyzW9p5Rxow5bX6Ng8-7VC3rUt0IERbco0V5B2TjM3FLLlswQ9YzBbUvBbnj7tXwaTqTx7Wo-775_NvZ1_h5dWXi7NPl9Cxni1Q9YF4JnohsAyC4Z4zO9gBKaEw7blkvXWOEs-ZUGIg0gYpvGGWOBSINZYedR_3urernfzg_LwUk_RtaSWWrc4m6n8jc_ypx7zRTY9jKZrA-weBkn-tvi56itX5lMzsW_maUIYFwUjKhr77D71ptbbe3VOkp5Jw3Ciyp1zrUi0-PH4GI73zVe991c1Xfe-rvmtJb5-W8Zjyx8UG0D1QW2geffn79jOyvwFe_K-P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342738251</pqid></control><display><type>article</type><title>Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory X-ray source</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Murrie, Rhiannon P. ; Werdiger, Freda ; Donnelley, Martin ; Lin, Yu-wei ; Carnibella, Richard P. ; Samarage, Chaminda R. ; Pinar, Isaac ; Preissner, Melissa ; Wang, Jiping ; Li, Jian ; Morgan, Kaye S. ; Parsons, David W. ; Dubsky, Stephen ; Fouras, Andreas</creator><creatorcontrib>Murrie, Rhiannon P. ; Werdiger, Freda ; Donnelley, Martin ; Lin, Yu-wei ; Carnibella, Richard P. ; Samarage, Chaminda R. ; Pinar, Isaac ; Preissner, Melissa ; Wang, Jiping ; Li, Jian ; Morgan, Kaye S. ; Parsons, David W. ; Dubsky, Stephen ; Fouras, Andreas</creatorcontrib><description>Most measures of lung health independently characterise either global lung function or regional lung structure. The ability to measure airflow and lung function regionally would provide a more specific and physiologically focused means by which to assess and track lung disease in both pre-clinical and clinical settings. One approach for achieving regional lung function measurement is via phase contrast X-ray imaging (PCXI), which has been shown to provide highly sensitive, high-resolution images of the lungs and airways in small animals. The detailed images provided by PCXI allow the application of four-dimensional X-ray velocimetry (4DxV) to track lung tissue motion and provide quantitative information on regional lung function. However, until recently synchrotron facilities were required to produce the highly coherent, high-flux X-rays that are required to achieve lung PCXI at a high enough frame rate to capture lung motion. This paper presents the first translation of 4DxV technology from a synchrotron facility into a laboratory setting by using a liquid-metal jet microfocus X-ray source. This source can provide the coherence required for PCXI and enough X-ray flux to image the dynamics of lung tissue motion during the respiratory cycle, which enables production of images compatible with 4DxV analysis. We demonstrate the measurements that can be captured
in vivo
in live mice using this technique, including regional airflow and tissue expansion. These measurements can inform physiological and biomedical research studies in small animals and assist in the development of new respiratory treatments.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-57376-w</identifier><identifier>PMID: 31949224</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59 ; 631/1647/245/1847 ; 631/1647/245/2221 ; 631/443/1784 ; 639/166/985 ; 639/766/400/1106 ; 64/60 ; Animals ; Cystic fibrosis ; Cystic Fibrosis - diagnostic imaging ; Cystic Fibrosis - physiopathology ; Disease Models, Animal ; Health risk assessment ; Humanities and Social Sciences ; Laboratories ; Lung - diagnostic imaging ; Lung - physiopathology ; Lung diseases ; Mice ; multidisciplinary ; Pulmonary Ventilation ; Respiratory function ; Science ; Science (multidisciplinary) ; Time Factors ; Tomography, X-Ray Computed - instrumentation ; X-rays</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.447-447, Article 447</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-97f2e4676618f641754bdbd09691375847bcc32e54696d28bf86ea4b2c0f2bab3</citedby><cites>FETCH-LOGICAL-c474t-97f2e4676618f641754bdbd09691375847bcc32e54696d28bf86ea4b2c0f2bab3</cites><orcidid>0000-0003-2144-9467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965186/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965186/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31949224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murrie, Rhiannon P.</creatorcontrib><creatorcontrib>Werdiger, Freda</creatorcontrib><creatorcontrib>Donnelley, Martin</creatorcontrib><creatorcontrib>Lin, Yu-wei</creatorcontrib><creatorcontrib>Carnibella, Richard P.</creatorcontrib><creatorcontrib>Samarage, Chaminda R.</creatorcontrib><creatorcontrib>Pinar, Isaac</creatorcontrib><creatorcontrib>Preissner, Melissa</creatorcontrib><creatorcontrib>Wang, Jiping</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Morgan, Kaye S.</creatorcontrib><creatorcontrib>Parsons, David W.</creatorcontrib><creatorcontrib>Dubsky, Stephen</creatorcontrib><creatorcontrib>Fouras, Andreas</creatorcontrib><title>Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory X-ray source</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Most measures of lung health independently characterise either global lung function or regional lung structure. The ability to measure airflow and lung function regionally would provide a more specific and physiologically focused means by which to assess and track lung disease in both pre-clinical and clinical settings. One approach for achieving regional lung function measurement is via phase contrast X-ray imaging (PCXI), which has been shown to provide highly sensitive, high-resolution images of the lungs and airways in small animals. The detailed images provided by PCXI allow the application of four-dimensional X-ray velocimetry (4DxV) to track lung tissue motion and provide quantitative information on regional lung function. However, until recently synchrotron facilities were required to produce the highly coherent, high-flux X-rays that are required to achieve lung PCXI at a high enough frame rate to capture lung motion. This paper presents the first translation of 4DxV technology from a synchrotron facility into a laboratory setting by using a liquid-metal jet microfocus X-ray source. This source can provide the coherence required for PCXI and enough X-ray flux to image the dynamics of lung tissue motion during the respiratory cycle, which enables production of images compatible with 4DxV analysis. We demonstrate the measurements that can be captured
in vivo
in live mice using this technique, including regional airflow and tissue expansion. These measurements can inform physiological and biomedical research studies in small animals and assist in the development of new respiratory treatments.</description><subject>59</subject><subject>631/1647/245/1847</subject><subject>631/1647/245/2221</subject><subject>631/443/1784</subject><subject>639/166/985</subject><subject>639/766/400/1106</subject><subject>64/60</subject><subject>Animals</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - diagnostic imaging</subject><subject>Cystic Fibrosis - physiopathology</subject><subject>Disease Models, Animal</subject><subject>Health risk assessment</subject><subject>Humanities and Social Sciences</subject><subject>Laboratories</subject><subject>Lung - diagnostic imaging</subject><subject>Lung - physiopathology</subject><subject>Lung diseases</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Pulmonary Ventilation</subject><subject>Respiratory function</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Time Factors</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>X-rays</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rFTEUhgdRbGn7B1xIwI2b1HxPshGkVC0UCkXBXUgyyZiSmdRk5pb7783trbW6aBb5Os95k3PernuD0SlGVH6oDHMlIcIK8p72At696A4JYhwSSsjLJ_uD7qTWG9QGJ4ph9bo7oFgxRQg77JZrbxJc4uRBnMEmbjKIkxnjPIIcQPFjzLNJIK3tIqyzW9p5Rxow5bX6Ng8-7VC3rUt0IERbco0V5B2TjM3FLLlswQ9YzBbUvBbnj7tXwaTqTx7Wo-775_NvZ1_h5dWXi7NPl9Cxni1Q9YF4JnohsAyC4Z4zO9gBKaEw7blkvXWOEs-ZUGIg0gYpvGGWOBSINZYedR_3urernfzg_LwUk_RtaSWWrc4m6n8jc_ypx7zRTY9jKZrA-weBkn-tvi56itX5lMzsW_maUIYFwUjKhr77D71ptbbe3VOkp5Jw3Ciyp1zrUi0-PH4GI73zVe991c1Xfe-rvmtJb5-W8Zjyx8UG0D1QW2geffn79jOyvwFe_K-P</recordid><startdate>20200116</startdate><enddate>20200116</enddate><creator>Murrie, Rhiannon P.</creator><creator>Werdiger, Freda</creator><creator>Donnelley, Martin</creator><creator>Lin, Yu-wei</creator><creator>Carnibella, Richard P.</creator><creator>Samarage, Chaminda R.</creator><creator>Pinar, Isaac</creator><creator>Preissner, Melissa</creator><creator>Wang, Jiping</creator><creator>Li, Jian</creator><creator>Morgan, Kaye S.</creator><creator>Parsons, David W.</creator><creator>Dubsky, Stephen</creator><creator>Fouras, Andreas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2144-9467</orcidid></search><sort><creationdate>20200116</creationdate><title>Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory X-ray source</title><author>Murrie, Rhiannon P. ; Werdiger, Freda ; Donnelley, Martin ; Lin, Yu-wei ; Carnibella, Richard P. ; Samarage, Chaminda R. ; Pinar, Isaac ; Preissner, Melissa ; Wang, Jiping ; Li, Jian ; Morgan, Kaye S. ; Parsons, David W. ; Dubsky, Stephen ; Fouras, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-97f2e4676618f641754bdbd09691375847bcc32e54696d28bf86ea4b2c0f2bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>59</topic><topic>631/1647/245/1847</topic><topic>631/1647/245/2221</topic><topic>631/443/1784</topic><topic>639/166/985</topic><topic>639/766/400/1106</topic><topic>64/60</topic><topic>Animals</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - diagnostic imaging</topic><topic>Cystic Fibrosis - physiopathology</topic><topic>Disease Models, Animal</topic><topic>Health risk assessment</topic><topic>Humanities and Social Sciences</topic><topic>Laboratories</topic><topic>Lung - diagnostic imaging</topic><topic>Lung - physiopathology</topic><topic>Lung diseases</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Pulmonary Ventilation</topic><topic>Respiratory function</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Time Factors</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murrie, Rhiannon P.</creatorcontrib><creatorcontrib>Werdiger, Freda</creatorcontrib><creatorcontrib>Donnelley, Martin</creatorcontrib><creatorcontrib>Lin, Yu-wei</creatorcontrib><creatorcontrib>Carnibella, Richard P.</creatorcontrib><creatorcontrib>Samarage, Chaminda R.</creatorcontrib><creatorcontrib>Pinar, Isaac</creatorcontrib><creatorcontrib>Preissner, Melissa</creatorcontrib><creatorcontrib>Wang, Jiping</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Morgan, Kaye S.</creatorcontrib><creatorcontrib>Parsons, David W.</creatorcontrib><creatorcontrib>Dubsky, Stephen</creatorcontrib><creatorcontrib>Fouras, Andreas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murrie, Rhiannon P.</au><au>Werdiger, Freda</au><au>Donnelley, Martin</au><au>Lin, Yu-wei</au><au>Carnibella, Richard P.</au><au>Samarage, Chaminda R.</au><au>Pinar, Isaac</au><au>Preissner, Melissa</au><au>Wang, Jiping</au><au>Li, Jian</au><au>Morgan, Kaye S.</au><au>Parsons, David W.</au><au>Dubsky, Stephen</au><au>Fouras, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory X-ray source</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-16</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>447</spage><epage>447</epage><pages>447-447</pages><artnum>447</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Most measures of lung health independently characterise either global lung function or regional lung structure. The ability to measure airflow and lung function regionally would provide a more specific and physiologically focused means by which to assess and track lung disease in both pre-clinical and clinical settings. One approach for achieving regional lung function measurement is via phase contrast X-ray imaging (PCXI), which has been shown to provide highly sensitive, high-resolution images of the lungs and airways in small animals. The detailed images provided by PCXI allow the application of four-dimensional X-ray velocimetry (4DxV) to track lung tissue motion and provide quantitative information on regional lung function. However, until recently synchrotron facilities were required to produce the highly coherent, high-flux X-rays that are required to achieve lung PCXI at a high enough frame rate to capture lung motion. This paper presents the first translation of 4DxV technology from a synchrotron facility into a laboratory setting by using a liquid-metal jet microfocus X-ray source. This source can provide the coherence required for PCXI and enough X-ray flux to image the dynamics of lung tissue motion during the respiratory cycle, which enables production of images compatible with 4DxV analysis. We demonstrate the measurements that can be captured
in vivo
in live mice using this technique, including regional airflow and tissue expansion. These measurements can inform physiological and biomedical research studies in small animals and assist in the development of new respiratory treatments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31949224</pmid><doi>10.1038/s41598-019-57376-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2144-9467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-01, Vol.10 (1), p.447-447, Article 447 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6965186 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 59 631/1647/245/1847 631/1647/245/2221 631/443/1784 639/166/985 639/766/400/1106 64/60 Animals Cystic fibrosis Cystic Fibrosis - diagnostic imaging Cystic Fibrosis - physiopathology Disease Models, Animal Health risk assessment Humanities and Social Sciences Laboratories Lung - diagnostic imaging Lung - physiopathology Lung diseases Mice multidisciplinary Pulmonary Ventilation Respiratory function Science Science (multidisciplinary) Time Factors Tomography, X-Ray Computed - instrumentation X-rays |
title | Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory X-ray source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20in%20vivo%20imaging%20of%20regional%20lung%20function%20in%20a%20mouse%20model%20of%20cystic%20fibrosis%20on%20a%20laboratory%20X-ray%20source&rft.jtitle=Scientific%20reports&rft.au=Murrie,%20Rhiannon%20P.&rft.date=2020-01-16&rft.volume=10&rft.issue=1&rft.spage=447&rft.epage=447&rft.pages=447-447&rft.artnum=447&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-57376-w&rft_dat=%3Cproquest_pubme%3E2342738251%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342738251&rft_id=info:pmid/31949224&rfr_iscdi=true |