Current-induced shuttlecock-like movement of non-axisymmetric chiral skyrmions

Current-induced motion of non-axisymmetric skyrmions within tilted ferromagnetic phases of polar helimagnets with the easy plane anisotropy is studied by micromagnetic simulations. Such non-axisymmetric skyrmions consist of a circular core and a crescent-shaped domain-wall region formed with respect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-01, Vol.10 (1), p.396-396, Article 396
Hauptverfasser: Murooka, Remi, Leonov, Andrey O., Inoue, Katsuya, Ohe, Jun-ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current-induced motion of non-axisymmetric skyrmions within tilted ferromagnetic phases of polar helimagnets with the easy plane anisotropy is studied by micromagnetic simulations. Such non-axisymmetric skyrmions consist of a circular core and a crescent-shaped domain-wall region formed with respect to the tilted surrounding state. Current-driven motion of non-axisymmetric skyrmions exhibits two distinct time regimes: initially the skyrmions rotate towards the current flow direction and subsequently move along the current with the skyrmionic crescent first. According to the Thiele equation, the asymmetric distribution of the topological charge and the dissipative force tensor play an important role for giving the different velocities for the circular and the crescent-shaped constituent parts of the skyrmion what underlies such a shuttlecock-like movement. Moreover, the current-velocity relation depends on the angle of the tilted ferromagnetic phase what makes in particular the transverse velocity of skyrmions sensitive to their field-driven configurational transformation. We also argue the possibility of magnetic racetrack waveguides based on complex interplay of robust asymmetric skyrmions with multiple twisted edge states.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-56791-3