Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis

Imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. The development of these biomarkers requires advances in both image acquisition and analysis. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomark...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-01, Vol.10 (1), p.326, Article 326
Hauptverfasser: Xu, Yanzhe, Wu, Teresa, Gao, Fei, Charlton, Jennifer R., Bennett, Kevin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 326
container_title Scientific reports
container_volume 10
creator Xu, Yanzhe
Wu, Teresa
Gao, Fei
Charlton, Jennifer R.
Bennett, Kevin M.
description Imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. The development of these biomarkers requires advances in both image acquisition and analysis. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomarkers. The challenges of detecting objects in images, particularly small objects known as blobs, include low image resolution, image noise and overlap between the blobs. The Difference of Gaussian (DoG) detector has been used to overcome these challenges in blob detection. However, the DoG detector is susceptible to over-detection and must be refined for robust, reproducible detection in a wide range of medical images. In this research, we propose a joint constraint blob detector from U-Net, a deep learning model, and Hessian analysis, to overcome these problems and identify true blobs from noisy medical images. We evaluate this approach, UH-DoG, using a public 2D fluorescent dataset for cell nucleus detection and a 3D kidney magnetic resonance imaging dataset for glomerulus detection. We then compare this approach to methods in the literature. While comparable to the other four comparing methods on recall, the UH-DoG outperforms them on both precision and F-score.
doi_str_mv 10.1038/s41598-019-57223-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339794018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-82b9357b90d057305df238a9fad236cf4c3540ca001291c60348441135669ae23</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEolXpH-CALHHhkmJ77CS-IKECbaVKXOBsOY4TvHLsxZNUyr-vly2lcMAXjzTfvJmnV1WvGb1gFLr3KJhUXU2ZqmXLOdTbs-qUUyFrDpw_f1KfVOeIO1qe5Eow9bI6AXYolDitppt5n9OdGwjOJgTSh9STwS3OLj5F4iOBT8TPZnJIVvRxIrvk4xI2YlPEJRsfy-zg3J4EZ3I8ECYO5NohehNLbcKGHl9VL0YT0J0__GfV9y-fv11e17dfr24uP97WVrRiqTveK5Btr-hAZQtUDiOHzqjRDBwaOwoLUlBrKGVcMdtQEJ0QjIFsGmUch7Pqw1F3v_azG6yL5cag97l4yJtOxuu_O9H_0FO6041qyqamCLx7EMjp5-pw0bNH60Iw0aUVNQdQrRKUdQV9-w-6S2suhg-UAN51IFWh-JGyOSFmNz4ew6g-RKmPUeoSpf4Vpd7K0JunNh5HfgdXADgCWFpxcvnP7v_I3gP0F6o9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343288359</pqid></control><display><type>article</type><title>Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Yanzhe ; Wu, Teresa ; Gao, Fei ; Charlton, Jennifer R. ; Bennett, Kevin M.</creator><creatorcontrib>Xu, Yanzhe ; Wu, Teresa ; Gao, Fei ; Charlton, Jennifer R. ; Bennett, Kevin M.</creatorcontrib><description>Imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. The development of these biomarkers requires advances in both image acquisition and analysis. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomarkers. The challenges of detecting objects in images, particularly small objects known as blobs, include low image resolution, image noise and overlap between the blobs. The Difference of Gaussian (DoG) detector has been used to overcome these challenges in blob detection. However, the DoG detector is susceptible to over-detection and must be refined for robust, reproducible detection in a wide range of medical images. In this research, we propose a joint constraint blob detector from U-Net, a deep learning model, and Hessian analysis, to overcome these problems and identify true blobs from noisy medical images. We evaluate this approach, UH-DoG, using a public 2D fluorescent dataset for cell nucleus detection and a 3D kidney magnetic resonance imaging dataset for glomerulus detection. We then compare this approach to methods in the literature. While comparable to the other four comparing methods on recall, the UH-DoG outperforms them on both precision and F-score.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-57223-y</identifier><identifier>PMID: 31941994</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1564 ; 692/53/2421 ; 692/699/1585/2759 ; Biomarkers ; Biomarkers - metabolism ; Deep Learning ; Glomerulus ; Humanities and Social Sciences ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional - methods ; Kidney - diagnostic imaging ; Magnetic Resonance Imaging ; multidisciplinary ; Science ; Science (multidisciplinary) ; Sensors</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.326, Article 326</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-82b9357b90d057305df238a9fad236cf4c3540ca001291c60348441135669ae23</citedby><cites>FETCH-LOGICAL-c474t-82b9357b90d057305df238a9fad236cf4c3540ca001291c60348441135669ae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962386/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962386/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31941994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yanzhe</creatorcontrib><creatorcontrib>Wu, Teresa</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Charlton, Jennifer R.</creatorcontrib><creatorcontrib>Bennett, Kevin M.</creatorcontrib><title>Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. The development of these biomarkers requires advances in both image acquisition and analysis. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomarkers. The challenges of detecting objects in images, particularly small objects known as blobs, include low image resolution, image noise and overlap between the blobs. The Difference of Gaussian (DoG) detector has been used to overcome these challenges in blob detection. However, the DoG detector is susceptible to over-detection and must be refined for robust, reproducible detection in a wide range of medical images. In this research, we propose a joint constraint blob detector from U-Net, a deep learning model, and Hessian analysis, to overcome these problems and identify true blobs from noisy medical images. We evaluate this approach, UH-DoG, using a public 2D fluorescent dataset for cell nucleus detection and a 3D kidney magnetic resonance imaging dataset for glomerulus detection. We then compare this approach to methods in the literature. While comparable to the other four comparing methods on recall, the UH-DoG outperforms them on both precision and F-score.</description><subject>631/114/1564</subject><subject>692/53/2421</subject><subject>692/699/1585/2759</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Deep Learning</subject><subject>Glomerulus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Kidney - diagnostic imaging</subject><subject>Magnetic Resonance Imaging</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFv1DAQhSMEolXpH-CALHHhkmJ77CS-IKECbaVKXOBsOY4TvHLsxZNUyr-vly2lcMAXjzTfvJmnV1WvGb1gFLr3KJhUXU2ZqmXLOdTbs-qUUyFrDpw_f1KfVOeIO1qe5Eow9bI6AXYolDitppt5n9OdGwjOJgTSh9STwS3OLj5F4iOBT8TPZnJIVvRxIrvk4xI2YlPEJRsfy-zg3J4EZ3I8ECYO5NohehNLbcKGHl9VL0YT0J0__GfV9y-fv11e17dfr24uP97WVrRiqTveK5Btr-hAZQtUDiOHzqjRDBwaOwoLUlBrKGVcMdtQEJ0QjIFsGmUch7Pqw1F3v_azG6yL5cag97l4yJtOxuu_O9H_0FO6041qyqamCLx7EMjp5-pw0bNH60Iw0aUVNQdQrRKUdQV9-w-6S2suhg-UAN51IFWh-JGyOSFmNz4ew6g-RKmPUeoSpf4Vpd7K0JunNh5HfgdXADgCWFpxcvnP7v_I3gP0F6o9</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Xu, Yanzhe</creator><creator>Wu, Teresa</creator><creator>Gao, Fei</creator><creator>Charlton, Jennifer R.</creator><creator>Bennett, Kevin M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200115</creationdate><title>Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis</title><author>Xu, Yanzhe ; Wu, Teresa ; Gao, Fei ; Charlton, Jennifer R. ; Bennett, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-82b9357b90d057305df238a9fad236cf4c3540ca001291c60348441135669ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/1564</topic><topic>692/53/2421</topic><topic>692/699/1585/2759</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Deep Learning</topic><topic>Glomerulus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Kidney - diagnostic imaging</topic><topic>Magnetic Resonance Imaging</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yanzhe</creatorcontrib><creatorcontrib>Wu, Teresa</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Charlton, Jennifer R.</creatorcontrib><creatorcontrib>Bennett, Kevin M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yanzhe</au><au>Wu, Teresa</au><au>Gao, Fei</au><au>Charlton, Jennifer R.</au><au>Bennett, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-15</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>326</spage><pages>326-</pages><artnum>326</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. The development of these biomarkers requires advances in both image acquisition and analysis. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomarkers. The challenges of detecting objects in images, particularly small objects known as blobs, include low image resolution, image noise and overlap between the blobs. The Difference of Gaussian (DoG) detector has been used to overcome these challenges in blob detection. However, the DoG detector is susceptible to over-detection and must be refined for robust, reproducible detection in a wide range of medical images. In this research, we propose a joint constraint blob detector from U-Net, a deep learning model, and Hessian analysis, to overcome these problems and identify true blobs from noisy medical images. We evaluate this approach, UH-DoG, using a public 2D fluorescent dataset for cell nucleus detection and a 3D kidney magnetic resonance imaging dataset for glomerulus detection. We then compare this approach to methods in the literature. While comparable to the other four comparing methods on recall, the UH-DoG outperforms them on both precision and F-score.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31941994</pmid><doi>10.1038/s41598-019-57223-y</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-01, Vol.10 (1), p.326, Article 326
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962386
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/114/1564
692/53/2421
692/699/1585/2759
Biomarkers
Biomarkers - metabolism
Deep Learning
Glomerulus
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted
Imaging, Three-Dimensional - methods
Kidney - diagnostic imaging
Magnetic Resonance Imaging
multidisciplinary
Science
Science (multidisciplinary)
Sensors
title Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20small%20blob%20detection%20in%203D%20images%20using%20jointly%20constrained%20deep%20learning%20and%20Hessian%20analysis&rft.jtitle=Scientific%20reports&rft.au=Xu,%20Yanzhe&rft.date=2020-01-15&rft.volume=10&rft.issue=1&rft.spage=326&rft.pages=326-&rft.artnum=326&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-57223-y&rft_dat=%3Cproquest_pubme%3E2339794018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343288359&rft_id=info:pmid/31941994&rfr_iscdi=true