Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer

Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1β, an abundant proinflammatory cytokine in the at-risk for lung cancer pu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-01, Vol.10 (1), p.377-377, Article 377
Hauptverfasser: Li, Rui, Ong, Stephanie L., Tran, Linh M., Jing, Zhe, Liu, Bin, Park, Stacy J., Huang, Zi Ling, Walser, Tonya C., Heinrich, Eileen L., Lee, Gina, Salehi-Rad, Ramin, Crosson, William P., Pagano, Paul C., Paul, Manash K., Xu, Shili, Herschman, Harvey, Krysan, Kostyantyn, Dubinett, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 1
container_start_page 377
container_title Scientific reports
container_volume 10
creator Li, Rui
Ong, Stephanie L.
Tran, Linh M.
Jing, Zhe
Liu, Bin
Park, Stacy J.
Huang, Zi Ling
Walser, Tonya C.
Heinrich, Eileen L.
Lee, Gina
Salehi-Rad, Ramin
Crosson, William P.
Pagano, Paul C.
Paul, Manash K.
Xu, Shili
Herschman, Harvey
Krysan, Kostyantyn
Dubinett, Steven
description Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1β, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1β exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1β exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1β exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.
doi_str_mv 10.1038/s41598-019-57285-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339790748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8034c30f70826fe55c3c31851e8fd18e93a78becc0994e9e6e3143f374484b103</originalsourceid><addsrcrecordid>eNp9Ustu1DAUjRCIVqU_wAJFYsPG4OfE3iChEbSVRmIDa8vj3CSuYjvYSaV8Df_Ah_BNeGZKKSzwwr7SPedcH_tU1UuC3xLM5LvMiVASYaKQaKgUaH1SnVPMBaKM0qeP6rPqMudbXJagihP1vDpj5FAocV593w4pBmfrmx0iP38gF9rFQlu70I3GezO7GOoE_TKaGXINk5sHGJ0Z0RyRhwzBDqs3Yz0nE7I7wj34mNZ6GiDEeZ0K7c6ZA7WHAHOZ5WPrOmeP4rmMqkMMKBeVsbZQtnEJfW1NsJBeVM86M2a4vD8vqq-fPn7ZXqPd56ub7YcdsrzhM5KYcctw12BJNx0IYZllRAoCsmuJBMVMI_dgLVaKg4INMMJZxxrOJd-XB72o3p90p2XvobUQiqFRT8l5k1YdjdN_d4IbdB_v9EZtKJOkCLy5F0jx2wJ51t7lgxsTIC5ZU8ZUo3DDZYG-_gd6G5cUir2C4ow2UmBeUPSEsinmnKB7uAzB-hABfYqALhHQxwjotZBePbbxQPn94QXAToBcWqGH9Gf2f2R_AZDxweU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343278504</pqid></control><display><type>article</type><title>Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Rui ; Ong, Stephanie L. ; Tran, Linh M. ; Jing, Zhe ; Liu, Bin ; Park, Stacy J. ; Huang, Zi Ling ; Walser, Tonya C. ; Heinrich, Eileen L. ; Lee, Gina ; Salehi-Rad, Ramin ; Crosson, William P. ; Pagano, Paul C. ; Paul, Manash K. ; Xu, Shili ; Herschman, Harvey ; Krysan, Kostyantyn ; Dubinett, Steven</creator><creatorcontrib>Li, Rui ; Ong, Stephanie L. ; Tran, Linh M. ; Jing, Zhe ; Liu, Bin ; Park, Stacy J. ; Huang, Zi Ling ; Walser, Tonya C. ; Heinrich, Eileen L. ; Lee, Gina ; Salehi-Rad, Ramin ; Crosson, William P. ; Pagano, Paul C. ; Paul, Manash K. ; Xu, Shili ; Herschman, Harvey ; Krysan, Kostyantyn ; Dubinett, Steven</creatorcontrib><description>Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1β, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1β exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1β exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1β exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-57285-y</identifier><identifier>PMID: 31941995</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 13/31 ; 13/89 ; 13/95 ; 38/39 ; 631/67/327 ; 692/4028/67/1612/1350 ; 82 ; 96/1 ; 96/21 ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Apoptosis ; Cadherins - genetics ; Cadherins - metabolism ; Carcinoma, Non-Small-Cell Lung - genetics ; Carcinoma, Non-Small-Cell Lung - immunology ; Carcinoma, Non-Small-Cell Lung - pathology ; Chemoresistance ; Chemotherapy ; Chromatin ; Deoxyribonucleic acid ; DNA ; DNA Methylation ; Doxycycline ; E-cadherin ; Epigenesis, Genetic ; Epigenetics ; Epithelial-Mesenchymal Transition ; Gene expression ; Gene Expression Regulation, Neoplastic ; Humanities and Social Sciences ; Humans ; IL-1β ; Immunologic Memory - genetics ; Immunologic Memory - immunology ; Immunoprecipitation ; Inflammation ; Inflammation - genetics ; Inflammation - immunology ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - immunology ; Lung Neoplasms - pathology ; Mesenchyme ; Microenvironments ; multidisciplinary ; Non-small cell lung carcinoma ; PD-L1 protein ; Phenotype ; Phenotypes ; Science ; Science (multidisciplinary) ; Small cell lung carcinoma ; Tumor Cells, Cultured ; Tumors</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.377-377, Article 377</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8034c30f70826fe55c3c31851e8fd18e93a78becc0994e9e6e3143f374484b103</citedby><cites>FETCH-LOGICAL-c474t-8034c30f70826fe55c3c31851e8fd18e93a78becc0994e9e6e3143f374484b103</cites><orcidid>0000-0002-5620-4833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962381/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962381/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31941995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Ong, Stephanie L.</creatorcontrib><creatorcontrib>Tran, Linh M.</creatorcontrib><creatorcontrib>Jing, Zhe</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Park, Stacy J.</creatorcontrib><creatorcontrib>Huang, Zi Ling</creatorcontrib><creatorcontrib>Walser, Tonya C.</creatorcontrib><creatorcontrib>Heinrich, Eileen L.</creatorcontrib><creatorcontrib>Lee, Gina</creatorcontrib><creatorcontrib>Salehi-Rad, Ramin</creatorcontrib><creatorcontrib>Crosson, William P.</creatorcontrib><creatorcontrib>Pagano, Paul C.</creatorcontrib><creatorcontrib>Paul, Manash K.</creatorcontrib><creatorcontrib>Xu, Shili</creatorcontrib><creatorcontrib>Herschman, Harvey</creatorcontrib><creatorcontrib>Krysan, Kostyantyn</creatorcontrib><creatorcontrib>Dubinett, Steven</creatorcontrib><title>Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1β, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1β exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1β exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1β exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.</description><subject>13/2</subject><subject>13/31</subject><subject>13/89</subject><subject>13/95</subject><subject>38/39</subject><subject>631/67/327</subject><subject>692/4028/67/1612/1350</subject><subject>82</subject><subject>96/1</subject><subject>96/21</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Apoptosis</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Carcinoma, Non-Small-Cell Lung - immunology</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Chromatin</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>Doxycycline</subject><subject>E-cadherin</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>IL-1β</subject><subject>Immunologic Memory - genetics</subject><subject>Immunologic Memory - immunology</subject><subject>Immunoprecipitation</subject><subject>Inflammation</subject><subject>Inflammation - genetics</subject><subject>Inflammation - immunology</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - immunology</subject><subject>Lung Neoplasms - pathology</subject><subject>Mesenchyme</subject><subject>Microenvironments</subject><subject>multidisciplinary</subject><subject>Non-small cell lung carcinoma</subject><subject>PD-L1 protein</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Small cell lung carcinoma</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9Ustu1DAUjRCIVqU_wAJFYsPG4OfE3iChEbSVRmIDa8vj3CSuYjvYSaV8Df_Ah_BNeGZKKSzwwr7SPedcH_tU1UuC3xLM5LvMiVASYaKQaKgUaH1SnVPMBaKM0qeP6rPqMudbXJagihP1vDpj5FAocV593w4pBmfrmx0iP38gF9rFQlu70I3GezO7GOoE_TKaGXINk5sHGJ0Z0RyRhwzBDqs3Yz0nE7I7wj34mNZ6GiDEeZ0K7c6ZA7WHAHOZ5WPrOmeP4rmMqkMMKBeVsbZQtnEJfW1NsJBeVM86M2a4vD8vqq-fPn7ZXqPd56ub7YcdsrzhM5KYcctw12BJNx0IYZllRAoCsmuJBMVMI_dgLVaKg4INMMJZxxrOJd-XB72o3p90p2XvobUQiqFRT8l5k1YdjdN_d4IbdB_v9EZtKJOkCLy5F0jx2wJ51t7lgxsTIC5ZU8ZUo3DDZYG-_gd6G5cUir2C4ow2UmBeUPSEsinmnKB7uAzB-hABfYqALhHQxwjotZBePbbxQPn94QXAToBcWqGH9Gf2f2R_AZDxweU</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Li, Rui</creator><creator>Ong, Stephanie L.</creator><creator>Tran, Linh M.</creator><creator>Jing, Zhe</creator><creator>Liu, Bin</creator><creator>Park, Stacy J.</creator><creator>Huang, Zi Ling</creator><creator>Walser, Tonya C.</creator><creator>Heinrich, Eileen L.</creator><creator>Lee, Gina</creator><creator>Salehi-Rad, Ramin</creator><creator>Crosson, William P.</creator><creator>Pagano, Paul C.</creator><creator>Paul, Manash K.</creator><creator>Xu, Shili</creator><creator>Herschman, Harvey</creator><creator>Krysan, Kostyantyn</creator><creator>Dubinett, Steven</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5620-4833</orcidid></search><sort><creationdate>20200115</creationdate><title>Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer</title><author>Li, Rui ; Ong, Stephanie L. ; Tran, Linh M. ; Jing, Zhe ; Liu, Bin ; Park, Stacy J. ; Huang, Zi Ling ; Walser, Tonya C. ; Heinrich, Eileen L. ; Lee, Gina ; Salehi-Rad, Ramin ; Crosson, William P. ; Pagano, Paul C. ; Paul, Manash K. ; Xu, Shili ; Herschman, Harvey ; Krysan, Kostyantyn ; Dubinett, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8034c30f70826fe55c3c31851e8fd18e93a78becc0994e9e6e3143f374484b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/2</topic><topic>13/31</topic><topic>13/89</topic><topic>13/95</topic><topic>38/39</topic><topic>631/67/327</topic><topic>692/4028/67/1612/1350</topic><topic>82</topic><topic>96/1</topic><topic>96/21</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Apoptosis</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Carcinoma, Non-Small-Cell Lung - immunology</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Chromatin</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>Doxycycline</topic><topic>E-cadherin</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>IL-1β</topic><topic>Immunologic Memory - genetics</topic><topic>Immunologic Memory - immunology</topic><topic>Immunoprecipitation</topic><topic>Inflammation</topic><topic>Inflammation - genetics</topic><topic>Inflammation - immunology</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - immunology</topic><topic>Lung Neoplasms - pathology</topic><topic>Mesenchyme</topic><topic>Microenvironments</topic><topic>multidisciplinary</topic><topic>Non-small cell lung carcinoma</topic><topic>PD-L1 protein</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Small cell lung carcinoma</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Ong, Stephanie L.</creatorcontrib><creatorcontrib>Tran, Linh M.</creatorcontrib><creatorcontrib>Jing, Zhe</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Park, Stacy J.</creatorcontrib><creatorcontrib>Huang, Zi Ling</creatorcontrib><creatorcontrib>Walser, Tonya C.</creatorcontrib><creatorcontrib>Heinrich, Eileen L.</creatorcontrib><creatorcontrib>Lee, Gina</creatorcontrib><creatorcontrib>Salehi-Rad, Ramin</creatorcontrib><creatorcontrib>Crosson, William P.</creatorcontrib><creatorcontrib>Pagano, Paul C.</creatorcontrib><creatorcontrib>Paul, Manash K.</creatorcontrib><creatorcontrib>Xu, Shili</creatorcontrib><creatorcontrib>Herschman, Harvey</creatorcontrib><creatorcontrib>Krysan, Kostyantyn</creatorcontrib><creatorcontrib>Dubinett, Steven</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Rui</au><au>Ong, Stephanie L.</au><au>Tran, Linh M.</au><au>Jing, Zhe</au><au>Liu, Bin</au><au>Park, Stacy J.</au><au>Huang, Zi Ling</au><au>Walser, Tonya C.</au><au>Heinrich, Eileen L.</au><au>Lee, Gina</au><au>Salehi-Rad, Ramin</au><au>Crosson, William P.</au><au>Pagano, Paul C.</au><au>Paul, Manash K.</au><au>Xu, Shili</au><au>Herschman, Harvey</au><au>Krysan, Kostyantyn</au><au>Dubinett, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-15</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>377</spage><epage>377</epage><pages>377-377</pages><artnum>377</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1β, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1β exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1β exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1β exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31941995</pmid><doi>10.1038/s41598-019-57285-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5620-4833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-01, Vol.10 (1), p.377-377, Article 377
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962381
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 13/2
13/31
13/89
13/95
38/39
631/67/327
692/4028/67/1612/1350
82
96/1
96/21
Antigens, CD - genetics
Antigens, CD - metabolism
Apoptosis
Cadherins - genetics
Cadherins - metabolism
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - immunology
Carcinoma, Non-Small-Cell Lung - pathology
Chemoresistance
Chemotherapy
Chromatin
Deoxyribonucleic acid
DNA
DNA Methylation
Doxycycline
E-cadherin
Epigenesis, Genetic
Epigenetics
Epithelial-Mesenchymal Transition
Gene expression
Gene Expression Regulation, Neoplastic
Humanities and Social Sciences
Humans
IL-1β
Immunologic Memory - genetics
Immunologic Memory - immunology
Immunoprecipitation
Inflammation
Inflammation - genetics
Inflammation - immunology
Interleukin-1beta - genetics
Interleukin-1beta - metabolism
Lung cancer
Lung Neoplasms - genetics
Lung Neoplasms - immunology
Lung Neoplasms - pathology
Mesenchyme
Microenvironments
multidisciplinary
Non-small cell lung carcinoma
PD-L1 protein
Phenotype
Phenotypes
Science
Science (multidisciplinary)
Small cell lung carcinoma
Tumor Cells, Cultured
Tumors
title Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20IL-1%CE%B2-induced%20inflammation%20regulates%20epithelial-to-mesenchymal%20transition%20memory%20phenotypes%20via%20epigenetic%20modifications%20in%20non-small%20cell%20lung%20cancer&rft.jtitle=Scientific%20reports&rft.au=Li,%20Rui&rft.date=2020-01-15&rft.volume=10&rft.issue=1&rft.spage=377&rft.epage=377&rft.pages=377-377&rft.artnum=377&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-57285-y&rft_dat=%3Cproquest_pubme%3E2339790748%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343278504&rft_id=info:pmid/31941995&rfr_iscdi=true