Targeting redox metabolism: the perfect storm induced by acrylamide poisoning in the brain
Exposure to acrylamide may lead to different neurotoxic effects in humans and in experimental animals. To gain insights into this poorly understood type of neurotoxicological damage, we used a multi-omic approach to characterize the molecular changes occurring in the zebrafish brain exposed to acryl...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-01, Vol.10 (1), p.312, Article 312 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 312 |
container_title | Scientific reports |
container_volume | 10 |
creator | Raldúa, Demetrio Casado, Marta Prats, Eva Faria, Melissa Puig-Castellví, Francesc Pérez, Yolanda Alfonso, Ignacio Hsu, Chuan-Yu Arick II, Mark A. Garcia-Reyero, Natàlia Ziv, Tamar Ben-Lulu, Shani Admon, Arie Piña, Benjamin |
description | Exposure to acrylamide may lead to different neurotoxic effects in humans and in experimental animals. To gain insights into this poorly understood type of neurotoxicological damage, we used a multi-omic approach to characterize the molecular changes occurring in the zebrafish brain exposed to acrylamide at metabolite, transcript and protein levels. We detected the formation of acrylamide adducts with thiol groups from both metabolites and protein residues, leading to a quasi-complete depletion of glutathione and to the inactivation of different components of the thioredoxin system. We propose that the combined loss-of-function of both redox metabolism-related systems configure a perfect storm that explains many acrylamide neurotoxic effects, like the dysregulation of genes related to microtubules, presynaptic vesicle alteration, and behavioral alterations. We consider that our mechanistical approach may help developing new treatments against the neurotoxic effects of acrylamide and of other neurotoxicants that may share its toxic mode of action. |
doi_str_mv | 10.1038/s41598-019-57142-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343279755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-ebbce4bae1754e180b83d2901d0116094b4407528cd3e1949bc69f6667e825963</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxa2KqkGUL9BDtVJPHBb8d3fdA1KEWkCK1Au99GLZ3klilLVTe4PYb4-TDWngUF888rz3G48eQl8IviSYNVeJEyGbEhNZippwWg4f0CnFXJSUUXpyVE_QeUqPOB9BJSfyE5owsi1qdor-POi4gN75RRGhDc9FB702YeVS973ol1CsIc7B9kXqQ-wK59uNhbYwQ6FtHFa6c23WBJeC3zKc35lM1M5_Rh_nepXgfH-fod8_fzzc3JWzX7f3N9NZaQVu-hKMscCNBlILDqTBpmEtlZi0mJAKS244x7WgjW0Z5H9LYys5r6qqhoYKWbEzdD1y1xvTQWvB91Gv1Dq6TsdBBe3U2453S7UIT6qSFSU1zoCLEbB8Z7ubztT2DXPOKcfsiWTtt_2wGP5uIPXqMWyiz_spyjijtayFyCo6qmwMKUWYH7AEq218aoxP5fjULj41ZNPX4z0OltewsoCNgpRbfgHx3-z_YF8ApbCmGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343279755</pqid></control><display><type>article</type><title>Targeting redox metabolism: the perfect storm induced by acrylamide poisoning in the brain</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Raldúa, Demetrio ; Casado, Marta ; Prats, Eva ; Faria, Melissa ; Puig-Castellví, Francesc ; Pérez, Yolanda ; Alfonso, Ignacio ; Hsu, Chuan-Yu ; Arick II, Mark A. ; Garcia-Reyero, Natàlia ; Ziv, Tamar ; Ben-Lulu, Shani ; Admon, Arie ; Piña, Benjamin</creator><creatorcontrib>Raldúa, Demetrio ; Casado, Marta ; Prats, Eva ; Faria, Melissa ; Puig-Castellví, Francesc ; Pérez, Yolanda ; Alfonso, Ignacio ; Hsu, Chuan-Yu ; Arick II, Mark A. ; Garcia-Reyero, Natàlia ; Ziv, Tamar ; Ben-Lulu, Shani ; Admon, Arie ; Piña, Benjamin</creatorcontrib><description>Exposure to acrylamide may lead to different neurotoxic effects in humans and in experimental animals. To gain insights into this poorly understood type of neurotoxicological damage, we used a multi-omic approach to characterize the molecular changes occurring in the zebrafish brain exposed to acrylamide at metabolite, transcript and protein levels. We detected the formation of acrylamide adducts with thiol groups from both metabolites and protein residues, leading to a quasi-complete depletion of glutathione and to the inactivation of different components of the thioredoxin system. We propose that the combined loss-of-function of both redox metabolism-related systems configure a perfect storm that explains many acrylamide neurotoxic effects, like the dysregulation of genes related to microtubules, presynaptic vesicle alteration, and behavioral alterations. We consider that our mechanistical approach may help developing new treatments against the neurotoxic effects of acrylamide and of other neurotoxicants that may share its toxic mode of action.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-57142-y</identifier><identifier>PMID: 31941973</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/570 ; 631/1647/2017 ; 631/1647/2067 ; 631/1647/320 ; Acrylamide ; Acrylamide - toxicity ; Adducts ; Analytical chemistry ; Animals ; Biochemistry, Molecular Biology ; Brain - drug effects ; Brain - metabolism ; Chemical Sciences ; Gene Expression Regulation - drug effects ; Glutathione ; Glutathione - metabolism ; Humanities and Social Sciences ; Inactivation ; Life Sciences ; Metabolism ; Metabolites ; Metabolome - drug effects ; Microtubules ; Mode of action ; multidisciplinary ; Neurotoxicity ; Oxidation-Reduction ; Proteome - analysis ; Proton Magnetic Resonance Spectroscopy ; Science ; Science (multidisciplinary) ; Thioredoxin ; Thioredoxins - metabolism ; Transcription ; Zebrafish - metabolism ; Zebrafish Proteins - metabolism</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.312, Article 312</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-ebbce4bae1754e180b83d2901d0116094b4407528cd3e1949bc69f6667e825963</citedby><cites>FETCH-LOGICAL-c508t-ebbce4bae1754e180b83d2901d0116094b4407528cd3e1949bc69f6667e825963</cites><orcidid>0000-0001-9216-2768 ; 0000-0003-1064-9586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962170/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962170/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31941973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04442403$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Raldúa, Demetrio</creatorcontrib><creatorcontrib>Casado, Marta</creatorcontrib><creatorcontrib>Prats, Eva</creatorcontrib><creatorcontrib>Faria, Melissa</creatorcontrib><creatorcontrib>Puig-Castellví, Francesc</creatorcontrib><creatorcontrib>Pérez, Yolanda</creatorcontrib><creatorcontrib>Alfonso, Ignacio</creatorcontrib><creatorcontrib>Hsu, Chuan-Yu</creatorcontrib><creatorcontrib>Arick II, Mark A.</creatorcontrib><creatorcontrib>Garcia-Reyero, Natàlia</creatorcontrib><creatorcontrib>Ziv, Tamar</creatorcontrib><creatorcontrib>Ben-Lulu, Shani</creatorcontrib><creatorcontrib>Admon, Arie</creatorcontrib><creatorcontrib>Piña, Benjamin</creatorcontrib><title>Targeting redox metabolism: the perfect storm induced by acrylamide poisoning in the brain</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Exposure to acrylamide may lead to different neurotoxic effects in humans and in experimental animals. To gain insights into this poorly understood type of neurotoxicological damage, we used a multi-omic approach to characterize the molecular changes occurring in the zebrafish brain exposed to acrylamide at metabolite, transcript and protein levels. We detected the formation of acrylamide adducts with thiol groups from both metabolites and protein residues, leading to a quasi-complete depletion of glutathione and to the inactivation of different components of the thioredoxin system. We propose that the combined loss-of-function of both redox metabolism-related systems configure a perfect storm that explains many acrylamide neurotoxic effects, like the dysregulation of genes related to microtubules, presynaptic vesicle alteration, and behavioral alterations. We consider that our mechanistical approach may help developing new treatments against the neurotoxic effects of acrylamide and of other neurotoxicants that may share its toxic mode of action.</description><subject>631/154/570</subject><subject>631/1647/2017</subject><subject>631/1647/2067</subject><subject>631/1647/320</subject><subject>Acrylamide</subject><subject>Acrylamide - toxicity</subject><subject>Adducts</subject><subject>Analytical chemistry</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Chemical Sciences</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glutathione</subject><subject>Glutathione - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Inactivation</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome - drug effects</subject><subject>Microtubules</subject><subject>Mode of action</subject><subject>multidisciplinary</subject><subject>Neurotoxicity</subject><subject>Oxidation-Reduction</subject><subject>Proteome - analysis</subject><subject>Proton Magnetic Resonance Spectroscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thioredoxin</subject><subject>Thioredoxins - metabolism</subject><subject>Transcription</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9PGzEQxa2KqkGUL9BDtVJPHBb8d3fdA1KEWkCK1Au99GLZ3klilLVTe4PYb4-TDWngUF888rz3G48eQl8IviSYNVeJEyGbEhNZippwWg4f0CnFXJSUUXpyVE_QeUqPOB9BJSfyE5owsi1qdor-POi4gN75RRGhDc9FB702YeVS973ol1CsIc7B9kXqQ-wK59uNhbYwQ6FtHFa6c23WBJeC3zKc35lM1M5_Rh_nepXgfH-fod8_fzzc3JWzX7f3N9NZaQVu-hKMscCNBlILDqTBpmEtlZi0mJAKS244x7WgjW0Z5H9LYys5r6qqhoYKWbEzdD1y1xvTQWvB91Gv1Dq6TsdBBe3U2453S7UIT6qSFSU1zoCLEbB8Z7ubztT2DXPOKcfsiWTtt_2wGP5uIPXqMWyiz_spyjijtayFyCo6qmwMKUWYH7AEq218aoxP5fjULj41ZNPX4z0OltewsoCNgpRbfgHx3-z_YF8ApbCmGw</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Raldúa, Demetrio</creator><creator>Casado, Marta</creator><creator>Prats, Eva</creator><creator>Faria, Melissa</creator><creator>Puig-Castellví, Francesc</creator><creator>Pérez, Yolanda</creator><creator>Alfonso, Ignacio</creator><creator>Hsu, Chuan-Yu</creator><creator>Arick II, Mark A.</creator><creator>Garcia-Reyero, Natàlia</creator><creator>Ziv, Tamar</creator><creator>Ben-Lulu, Shani</creator><creator>Admon, Arie</creator><creator>Piña, Benjamin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9216-2768</orcidid><orcidid>https://orcid.org/0000-0003-1064-9586</orcidid></search><sort><creationdate>20200115</creationdate><title>Targeting redox metabolism: the perfect storm induced by acrylamide poisoning in the brain</title><author>Raldúa, Demetrio ; Casado, Marta ; Prats, Eva ; Faria, Melissa ; Puig-Castellví, Francesc ; Pérez, Yolanda ; Alfonso, Ignacio ; Hsu, Chuan-Yu ; Arick II, Mark A. ; Garcia-Reyero, Natàlia ; Ziv, Tamar ; Ben-Lulu, Shani ; Admon, Arie ; Piña, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-ebbce4bae1754e180b83d2901d0116094b4407528cd3e1949bc69f6667e825963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/154/570</topic><topic>631/1647/2017</topic><topic>631/1647/2067</topic><topic>631/1647/320</topic><topic>Acrylamide</topic><topic>Acrylamide - toxicity</topic><topic>Adducts</topic><topic>Analytical chemistry</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Chemical Sciences</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glutathione</topic><topic>Glutathione - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Inactivation</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome - drug effects</topic><topic>Microtubules</topic><topic>Mode of action</topic><topic>multidisciplinary</topic><topic>Neurotoxicity</topic><topic>Oxidation-Reduction</topic><topic>Proteome - analysis</topic><topic>Proton Magnetic Resonance Spectroscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thioredoxin</topic><topic>Thioredoxins - metabolism</topic><topic>Transcription</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raldúa, Demetrio</creatorcontrib><creatorcontrib>Casado, Marta</creatorcontrib><creatorcontrib>Prats, Eva</creatorcontrib><creatorcontrib>Faria, Melissa</creatorcontrib><creatorcontrib>Puig-Castellví, Francesc</creatorcontrib><creatorcontrib>Pérez, Yolanda</creatorcontrib><creatorcontrib>Alfonso, Ignacio</creatorcontrib><creatorcontrib>Hsu, Chuan-Yu</creatorcontrib><creatorcontrib>Arick II, Mark A.</creatorcontrib><creatorcontrib>Garcia-Reyero, Natàlia</creatorcontrib><creatorcontrib>Ziv, Tamar</creatorcontrib><creatorcontrib>Ben-Lulu, Shani</creatorcontrib><creatorcontrib>Admon, Arie</creatorcontrib><creatorcontrib>Piña, Benjamin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raldúa, Demetrio</au><au>Casado, Marta</au><au>Prats, Eva</au><au>Faria, Melissa</au><au>Puig-Castellví, Francesc</au><au>Pérez, Yolanda</au><au>Alfonso, Ignacio</au><au>Hsu, Chuan-Yu</au><au>Arick II, Mark A.</au><au>Garcia-Reyero, Natàlia</au><au>Ziv, Tamar</au><au>Ben-Lulu, Shani</au><au>Admon, Arie</au><au>Piña, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting redox metabolism: the perfect storm induced by acrylamide poisoning in the brain</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-15</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>312</spage><pages>312-</pages><artnum>312</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Exposure to acrylamide may lead to different neurotoxic effects in humans and in experimental animals. To gain insights into this poorly understood type of neurotoxicological damage, we used a multi-omic approach to characterize the molecular changes occurring in the zebrafish brain exposed to acrylamide at metabolite, transcript and protein levels. We detected the formation of acrylamide adducts with thiol groups from both metabolites and protein residues, leading to a quasi-complete depletion of glutathione and to the inactivation of different components of the thioredoxin system. We propose that the combined loss-of-function of both redox metabolism-related systems configure a perfect storm that explains many acrylamide neurotoxic effects, like the dysregulation of genes related to microtubules, presynaptic vesicle alteration, and behavioral alterations. We consider that our mechanistical approach may help developing new treatments against the neurotoxic effects of acrylamide and of other neurotoxicants that may share its toxic mode of action.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31941973</pmid><doi>10.1038/s41598-019-57142-y</doi><orcidid>https://orcid.org/0000-0001-9216-2768</orcidid><orcidid>https://orcid.org/0000-0003-1064-9586</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-01, Vol.10 (1), p.312, Article 312 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962170 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/154/570 631/1647/2017 631/1647/2067 631/1647/320 Acrylamide Acrylamide - toxicity Adducts Analytical chemistry Animals Biochemistry, Molecular Biology Brain - drug effects Brain - metabolism Chemical Sciences Gene Expression Regulation - drug effects Glutathione Glutathione - metabolism Humanities and Social Sciences Inactivation Life Sciences Metabolism Metabolites Metabolome - drug effects Microtubules Mode of action multidisciplinary Neurotoxicity Oxidation-Reduction Proteome - analysis Proton Magnetic Resonance Spectroscopy Science Science (multidisciplinary) Thioredoxin Thioredoxins - metabolism Transcription Zebrafish - metabolism Zebrafish Proteins - metabolism |
title | Targeting redox metabolism: the perfect storm induced by acrylamide poisoning in the brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20redox%20metabolism:%20the%20perfect%20storm%20induced%20by%20acrylamide%20poisoning%20in%20the%20brain&rft.jtitle=Scientific%20reports&rft.au=Rald%C3%BAa,%20Demetrio&rft.date=2020-01-15&rft.volume=10&rft.issue=1&rft.spage=312&rft.pages=312-&rft.artnum=312&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-57142-y&rft_dat=%3Cproquest_pubme%3E2343279755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343279755&rft_id=info:pmid/31941973&rfr_iscdi=true |