Feasibility Study of Enhancing Microwave Brain Imaging Using Metamaterials

We present an approach to enhance microwave brain imaging with an innovative metamaterial (MM) planar design based on a cross-shaped split-ring resonator (SRR-CS). The proposed metasurface is incorporated in different setups, and its interaction with EM waves is studied both experimentally and by us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-12, Vol.19 (24), p.5472
Hauptverfasser: Razzicchia, Eleonora, Sotiriou, Ioannis, Cano-Garcia, Helena, Kallos, Efthymios, Palikaras, George, Kosmas, Panagiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 5472
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Razzicchia, Eleonora
Sotiriou, Ioannis
Cano-Garcia, Helena
Kallos, Efthymios
Palikaras, George
Kosmas, Panagiotis
description We present an approach to enhance microwave brain imaging with an innovative metamaterial (MM) planar design based on a cross-shaped split-ring resonator (SRR-CS). The proposed metasurface is incorporated in different setups, and its interaction with EM waves is studied both experimentally and by using CST Microwave Studio and is compared to a "no MM" case scenario. We show that the MM can enhance the penetration of the transmitted signals into the human head when placed in contact with skin tissue, acting as an impedance-matching layer. In addition, we show that the MM can improve the transceivers' ability to detect useful "weak" signals when incorporated in a headband scanner for brain imaging by increasing the signal difference from a blood-like dielectric target introduced into the brain volume. Our results suggest that the proposed MM film can be a powerful hardware advance towards the development of scanners for brain haemorrhage detection and monitoring.
doi_str_mv 10.3390/s19245472
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6961002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535493002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-68867721600bea61b57dbf6a1530c61b6bf36b936cdf695a2de6bf464a1c69323</originalsourceid><addsrcrecordid>eNpdkcFPwjAUxhujEUUP_gNmiRc9oG1f120XEyWgGIwH5dx0WwclW4fthuG_twgS9PTa93758r33IXRB8C1Agu8cSSgLWUQP0AlhlPViSvHh3ruDTp2bY0wBID5GHSAxo5TzE_QyVNLpVJe6WQXvTZuvgroIBmYmTabNNHjVma2_5FIFj1ZqE4wqOV33J-5nqhpZyUZZLUt3ho4KX9T5tnbRZDj46D_3xm9Po_7DuJcxDE2PxzGPIko4xqmSnKRhlKcFlyQEnPkvTwvgaQI8ywuehJLmyrcYZ5JkPAEKXXS_0V20aaXyTJnGylIsrK6kXYlaavF3YvRMTOul4Akn6xt00fVWwNafrXKNqLTLVFlKo-rWCQo0SiD0Jj169Q-d1601fj1BQwhZAhvBmw3lb-WcVcXODMFinZDYJeTZy333O_I3EvgGAz6K1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535493002</pqid></control><display><type>article</type><title>Feasibility Study of Enhancing Microwave Brain Imaging Using Metamaterials</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Razzicchia, Eleonora ; Sotiriou, Ioannis ; Cano-Garcia, Helena ; Kallos, Efthymios ; Palikaras, George ; Kosmas, Panagiotis</creator><creatorcontrib>Razzicchia, Eleonora ; Sotiriou, Ioannis ; Cano-Garcia, Helena ; Kallos, Efthymios ; Palikaras, George ; Kosmas, Panagiotis</creatorcontrib><description>We present an approach to enhance microwave brain imaging with an innovative metamaterial (MM) planar design based on a cross-shaped split-ring resonator (SRR-CS). The proposed metasurface is incorporated in different setups, and its interaction with EM waves is studied both experimentally and by using CST Microwave Studio and is compared to a "no MM" case scenario. We show that the MM can enhance the penetration of the transmitted signals into the human head when placed in contact with skin tissue, acting as an impedance-matching layer. In addition, we show that the MM can improve the transceivers' ability to detect useful "weak" signals when incorporated in a headband scanner for brain imaging by increasing the signal difference from a blood-like dielectric target introduced into the brain volume. Our results suggest that the proposed MM film can be a powerful hardware advance towards the development of scanners for brain haemorrhage detection and monitoring.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19245472</identifier><identifier>PMID: 31842266</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Antennas ; Brain - diagnostic imaging ; Brain - physiology ; Breast cancer ; Computer Simulation ; Dielectric properties ; Electric Impedance ; Experiments ; Feasibility Studies ; Hemorrhage ; Humans ; Imaging ; Impedance matching ; Localization ; Magnetic resonance imaging ; Matching layers (electronics) ; Medical imaging ; Metamaterials ; Microwaves ; Neuroimaging - methods ; Permeability ; Scanners ; Simulation ; Skin</subject><ispartof>Sensors (Basel, Switzerland), 2019-12, Vol.19 (24), p.5472</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-68867721600bea61b57dbf6a1530c61b6bf36b936cdf695a2de6bf464a1c69323</citedby><cites>FETCH-LOGICAL-c403t-68867721600bea61b57dbf6a1530c61b6bf36b936cdf695a2de6bf464a1c69323</cites><orcidid>0000-0001-7703-3909 ; 0000-0002-0924-9078 ; 0000-0002-7128-3859 ; 0000-0001-9759-2820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961002/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961002/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31842266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Razzicchia, Eleonora</creatorcontrib><creatorcontrib>Sotiriou, Ioannis</creatorcontrib><creatorcontrib>Cano-Garcia, Helena</creatorcontrib><creatorcontrib>Kallos, Efthymios</creatorcontrib><creatorcontrib>Palikaras, George</creatorcontrib><creatorcontrib>Kosmas, Panagiotis</creatorcontrib><title>Feasibility Study of Enhancing Microwave Brain Imaging Using Metamaterials</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>We present an approach to enhance microwave brain imaging with an innovative metamaterial (MM) planar design based on a cross-shaped split-ring resonator (SRR-CS). The proposed metasurface is incorporated in different setups, and its interaction with EM waves is studied both experimentally and by using CST Microwave Studio and is compared to a "no MM" case scenario. We show that the MM can enhance the penetration of the transmitted signals into the human head when placed in contact with skin tissue, acting as an impedance-matching layer. In addition, we show that the MM can improve the transceivers' ability to detect useful "weak" signals when incorporated in a headband scanner for brain imaging by increasing the signal difference from a blood-like dielectric target introduced into the brain volume. Our results suggest that the proposed MM film can be a powerful hardware advance towards the development of scanners for brain haemorrhage detection and monitoring.</description><subject>Antennas</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Breast cancer</subject><subject>Computer Simulation</subject><subject>Dielectric properties</subject><subject>Electric Impedance</subject><subject>Experiments</subject><subject>Feasibility Studies</subject><subject>Hemorrhage</subject><subject>Humans</subject><subject>Imaging</subject><subject>Impedance matching</subject><subject>Localization</subject><subject>Magnetic resonance imaging</subject><subject>Matching layers (electronics)</subject><subject>Medical imaging</subject><subject>Metamaterials</subject><subject>Microwaves</subject><subject>Neuroimaging - methods</subject><subject>Permeability</subject><subject>Scanners</subject><subject>Simulation</subject><subject>Skin</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkcFPwjAUxhujEUUP_gNmiRc9oG1f120XEyWgGIwH5dx0WwclW4fthuG_twgS9PTa93758r33IXRB8C1Agu8cSSgLWUQP0AlhlPViSvHh3ruDTp2bY0wBID5GHSAxo5TzE_QyVNLpVJe6WQXvTZuvgroIBmYmTabNNHjVma2_5FIFj1ZqE4wqOV33J-5nqhpZyUZZLUt3ho4KX9T5tnbRZDj46D_3xm9Po_7DuJcxDE2PxzGPIko4xqmSnKRhlKcFlyQEnPkvTwvgaQI8ywuehJLmyrcYZ5JkPAEKXXS_0V20aaXyTJnGylIsrK6kXYlaavF3YvRMTOul4Akn6xt00fVWwNafrXKNqLTLVFlKo-rWCQo0SiD0Jj169Q-d1601fj1BQwhZAhvBmw3lb-WcVcXODMFinZDYJeTZy333O_I3EvgGAz6K1g</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Razzicchia, Eleonora</creator><creator>Sotiriou, Ioannis</creator><creator>Cano-Garcia, Helena</creator><creator>Kallos, Efthymios</creator><creator>Palikaras, George</creator><creator>Kosmas, Panagiotis</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7703-3909</orcidid><orcidid>https://orcid.org/0000-0002-0924-9078</orcidid><orcidid>https://orcid.org/0000-0002-7128-3859</orcidid><orcidid>https://orcid.org/0000-0001-9759-2820</orcidid></search><sort><creationdate>20191212</creationdate><title>Feasibility Study of Enhancing Microwave Brain Imaging Using Metamaterials</title><author>Razzicchia, Eleonora ; Sotiriou, Ioannis ; Cano-Garcia, Helena ; Kallos, Efthymios ; Palikaras, George ; Kosmas, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-68867721600bea61b57dbf6a1530c61b6bf36b936cdf695a2de6bf464a1c69323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antennas</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Breast cancer</topic><topic>Computer Simulation</topic><topic>Dielectric properties</topic><topic>Electric Impedance</topic><topic>Experiments</topic><topic>Feasibility Studies</topic><topic>Hemorrhage</topic><topic>Humans</topic><topic>Imaging</topic><topic>Impedance matching</topic><topic>Localization</topic><topic>Magnetic resonance imaging</topic><topic>Matching layers (electronics)</topic><topic>Medical imaging</topic><topic>Metamaterials</topic><topic>Microwaves</topic><topic>Neuroimaging - methods</topic><topic>Permeability</topic><topic>Scanners</topic><topic>Simulation</topic><topic>Skin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razzicchia, Eleonora</creatorcontrib><creatorcontrib>Sotiriou, Ioannis</creatorcontrib><creatorcontrib>Cano-Garcia, Helena</creatorcontrib><creatorcontrib>Kallos, Efthymios</creatorcontrib><creatorcontrib>Palikaras, George</creatorcontrib><creatorcontrib>Kosmas, Panagiotis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razzicchia, Eleonora</au><au>Sotiriou, Ioannis</au><au>Cano-Garcia, Helena</au><au>Kallos, Efthymios</au><au>Palikaras, George</au><au>Kosmas, Panagiotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility Study of Enhancing Microwave Brain Imaging Using Metamaterials</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-12-12</date><risdate>2019</risdate><volume>19</volume><issue>24</issue><spage>5472</spage><pages>5472-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>We present an approach to enhance microwave brain imaging with an innovative metamaterial (MM) planar design based on a cross-shaped split-ring resonator (SRR-CS). The proposed metasurface is incorporated in different setups, and its interaction with EM waves is studied both experimentally and by using CST Microwave Studio and is compared to a "no MM" case scenario. We show that the MM can enhance the penetration of the transmitted signals into the human head when placed in contact with skin tissue, acting as an impedance-matching layer. In addition, we show that the MM can improve the transceivers' ability to detect useful "weak" signals when incorporated in a headband scanner for brain imaging by increasing the signal difference from a blood-like dielectric target introduced into the brain volume. Our results suggest that the proposed MM film can be a powerful hardware advance towards the development of scanners for brain haemorrhage detection and monitoring.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31842266</pmid><doi>10.3390/s19245472</doi><orcidid>https://orcid.org/0000-0001-7703-3909</orcidid><orcidid>https://orcid.org/0000-0002-0924-9078</orcidid><orcidid>https://orcid.org/0000-0002-7128-3859</orcidid><orcidid>https://orcid.org/0000-0001-9759-2820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-12, Vol.19 (24), p.5472
issn 1424-8220
1424-8220
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6961002
source MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Antennas
Brain - diagnostic imaging
Brain - physiology
Breast cancer
Computer Simulation
Dielectric properties
Electric Impedance
Experiments
Feasibility Studies
Hemorrhage
Humans
Imaging
Impedance matching
Localization
Magnetic resonance imaging
Matching layers (electronics)
Medical imaging
Metamaterials
Microwaves
Neuroimaging - methods
Permeability
Scanners
Simulation
Skin
title Feasibility Study of Enhancing Microwave Brain Imaging Using Metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20Study%20of%20Enhancing%20Microwave%20Brain%20Imaging%20Using%20Metamaterials&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Razzicchia,%20Eleonora&rft.date=2019-12-12&rft.volume=19&rft.issue=24&rft.spage=5472&rft.pages=5472-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19245472&rft_dat=%3Cproquest_pubme%3E2535493002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535493002&rft_id=info:pmid/31842266&rfr_iscdi=true