An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism

The worldwide applications of polyurethane (PU) and polystyrene (PS) sponge materials have been causing massive non-renewable resource consumption and huge loss of property and life due to its high flammability. Finding a biodegradable and regenerative sponge material with desirable thermal and flam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2019-11, Vol.11 (12), p.1973
Hauptverfasser: Jiang, Yuhuan, Pang, Xuening, Deng, Yujia, Sun, Xiaolu, Zhao, Xihui, Xu, Peng, Shao, Peiyuan, Zhang, Lei, Li, Qun, Li, Zichao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1973
container_title Polymers
container_volume 11
creator Jiang, Yuhuan
Pang, Xuening
Deng, Yujia
Sun, Xiaolu
Zhao, Xihui
Xu, Peng
Shao, Peiyuan
Zhang, Lei
Li, Qun
Li, Zichao
description The worldwide applications of polyurethane (PU) and polystyrene (PS) sponge materials have been causing massive non-renewable resource consumption and huge loss of property and life due to its high flammability. Finding a biodegradable and regenerative sponge material with desirable thermal and flame retardant properties remains challenging to date. In this study, bio-based, renewable calcium alginate hybrid sponge materials (CAS) with high thermal stability and flame retardancy were fabricated through a simple, eco-friendly, in situ, chemical-foaming process at room temperature, followed by a facile and economical post-cross-linking method to obtain the organic-inorganic (CaCO ) hybrid materials. The microstructure of CAS showed desirable porous networks with a porosity rate of 70.3%, indicating that a great amount of raw materials can be saved to achieve remarkable cost control. The sponge materials reached a limiting oxygen index (LOI) of 39, which was greatly improved compared with common sponge. Moreover, with only 5% calcium carbonate content, the initial thermal degradation temperature of CAS was increased by 70 °C (from 150 to 220 °C), compared to that of calcium alginate, which met the requirements of high-temperature resistant and nonflammable materials. The thermal degradation mechanism of CAS was supposed based on the experimental data. The combined results suggest promising prospects for the application of CAS in a range of fields and the sponge materials provide an alternative for the commonly used PU and PS sponge materials.
doi_str_mv 10.3390/polym11121973
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6960948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322137337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-141718a0783dd268053f195740a577a06e78c69d112600df921cea03075c7a253</originalsourceid><addsrcrecordid>eNpdkctLJDEQxoPsssqsx71KwMteWvPoJN0eFgZRR3DZxcc51KQz05F00ptklPnvbfGBbqhQBfXjoz4-hH5QcsR5S47H6LcDpZTRVvEdtMeI4lXNJfnyYd5F-znfk-nVQkqqvqFdThtCGVN7yMwDnvu1C1AsXmyXyXX4ZoxhbfGjKz1euHWPb3ubBvD4psDSeVe2J_iyZHzuYbD42hZIHYSC_6Y42lSczRhCh39b00NwefiOvq7AZ7v_2mfo7vzs9nRRXf25uDydX1WmpqJUtKaKNkBUw7uOyYYIvqKtUDUBoRQQaVVjZNtNdiUh3apl1FggnChhFDDBZ-jXi-64WQ62MzaUBF6PyQ2QtjqC0583wfV6HR-0bCVp62YS-PkqkOK_jc1FDy4b6z0EGzdZM84Y5YpPNUOH_6H3cZPCZE8zIcj0hWwnqnqhTIo5J7t6P4YS_Zyg_pTgxB98dPBOv-XFnwCAepX-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550255569</pqid></control><display><type>article</type><title>An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Jiang, Yuhuan ; Pang, Xuening ; Deng, Yujia ; Sun, Xiaolu ; Zhao, Xihui ; Xu, Peng ; Shao, Peiyuan ; Zhang, Lei ; Li, Qun ; Li, Zichao</creator><creatorcontrib>Jiang, Yuhuan ; Pang, Xuening ; Deng, Yujia ; Sun, Xiaolu ; Zhao, Xihui ; Xu, Peng ; Shao, Peiyuan ; Zhang, Lei ; Li, Qun ; Li, Zichao</creatorcontrib><description>The worldwide applications of polyurethane (PU) and polystyrene (PS) sponge materials have been causing massive non-renewable resource consumption and huge loss of property and life due to its high flammability. Finding a biodegradable and regenerative sponge material with desirable thermal and flame retardant properties remains challenging to date. In this study, bio-based, renewable calcium alginate hybrid sponge materials (CAS) with high thermal stability and flame retardancy were fabricated through a simple, eco-friendly, in situ, chemical-foaming process at room temperature, followed by a facile and economical post-cross-linking method to obtain the organic-inorganic (CaCO ) hybrid materials. The microstructure of CAS showed desirable porous networks with a porosity rate of 70.3%, indicating that a great amount of raw materials can be saved to achieve remarkable cost control. The sponge materials reached a limiting oxygen index (LOI) of 39, which was greatly improved compared with common sponge. Moreover, with only 5% calcium carbonate content, the initial thermal degradation temperature of CAS was increased by 70 °C (from 150 to 220 °C), compared to that of calcium alginate, which met the requirements of high-temperature resistant and nonflammable materials. The thermal degradation mechanism of CAS was supposed based on the experimental data. The combined results suggest promising prospects for the application of CAS in a range of fields and the sponge materials provide an alternative for the commonly used PU and PS sponge materials.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym11121973</identifier><identifier>PMID: 31801227</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biodegradability ; Calcium alginate ; Calcium carbonate ; Chromatography ; Crosslinking ; Flame retardants ; Flammability ; High temperature ; Mass spectrometry ; Nonflammable materials ; Nonrenewable resources ; Polystyrene resins ; Polyurethane resins ; Raw materials ; Room temperature ; Scanning electron microscopy ; Scientific imaging ; Sodium ; Thermal degradation ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Polymers, 2019-11, Vol.11 (12), p.1973</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-141718a0783dd268053f195740a577a06e78c69d112600df921cea03075c7a253</citedby><cites>FETCH-LOGICAL-c415t-141718a0783dd268053f195740a577a06e78c69d112600df921cea03075c7a253</cites><orcidid>0000-0001-8180-0808 ; 0000-0003-0532-105X ; 0000-0003-2582-3006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960948/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960948/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31801227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yuhuan</creatorcontrib><creatorcontrib>Pang, Xuening</creatorcontrib><creatorcontrib>Deng, Yujia</creatorcontrib><creatorcontrib>Sun, Xiaolu</creatorcontrib><creatorcontrib>Zhao, Xihui</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Shao, Peiyuan</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Qun</creatorcontrib><creatorcontrib>Li, Zichao</creatorcontrib><title>An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The worldwide applications of polyurethane (PU) and polystyrene (PS) sponge materials have been causing massive non-renewable resource consumption and huge loss of property and life due to its high flammability. Finding a biodegradable and regenerative sponge material with desirable thermal and flame retardant properties remains challenging to date. In this study, bio-based, renewable calcium alginate hybrid sponge materials (CAS) with high thermal stability and flame retardancy were fabricated through a simple, eco-friendly, in situ, chemical-foaming process at room temperature, followed by a facile and economical post-cross-linking method to obtain the organic-inorganic (CaCO ) hybrid materials. The microstructure of CAS showed desirable porous networks with a porosity rate of 70.3%, indicating that a great amount of raw materials can be saved to achieve remarkable cost control. The sponge materials reached a limiting oxygen index (LOI) of 39, which was greatly improved compared with common sponge. Moreover, with only 5% calcium carbonate content, the initial thermal degradation temperature of CAS was increased by 70 °C (from 150 to 220 °C), compared to that of calcium alginate, which met the requirements of high-temperature resistant and nonflammable materials. The thermal degradation mechanism of CAS was supposed based on the experimental data. The combined results suggest promising prospects for the application of CAS in a range of fields and the sponge materials provide an alternative for the commonly used PU and PS sponge materials.</description><subject>Biodegradability</subject><subject>Calcium alginate</subject><subject>Calcium carbonate</subject><subject>Chromatography</subject><subject>Crosslinking</subject><subject>Flame retardants</subject><subject>Flammability</subject><subject>High temperature</subject><subject>Mass spectrometry</subject><subject>Nonflammable materials</subject><subject>Nonrenewable resources</subject><subject>Polystyrene resins</subject><subject>Polyurethane resins</subject><subject>Raw materials</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Scientific imaging</subject><subject>Sodium</subject><subject>Thermal degradation</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkctLJDEQxoPsssqsx71KwMteWvPoJN0eFgZRR3DZxcc51KQz05F00ptklPnvbfGBbqhQBfXjoz4-hH5QcsR5S47H6LcDpZTRVvEdtMeI4lXNJfnyYd5F-znfk-nVQkqqvqFdThtCGVN7yMwDnvu1C1AsXmyXyXX4ZoxhbfGjKz1euHWPb3ubBvD4psDSeVe2J_iyZHzuYbD42hZIHYSC_6Y42lSczRhCh39b00NwefiOvq7AZ7v_2mfo7vzs9nRRXf25uDydX1WmpqJUtKaKNkBUw7uOyYYIvqKtUDUBoRQQaVVjZNtNdiUh3apl1FggnChhFDDBZ-jXi-64WQ62MzaUBF6PyQ2QtjqC0583wfV6HR-0bCVp62YS-PkqkOK_jc1FDy4b6z0EGzdZM84Y5YpPNUOH_6H3cZPCZE8zIcj0hWwnqnqhTIo5J7t6P4YS_Zyg_pTgxB98dPBOv-XFnwCAepX-</recordid><startdate>20191130</startdate><enddate>20191130</enddate><creator>Jiang, Yuhuan</creator><creator>Pang, Xuening</creator><creator>Deng, Yujia</creator><creator>Sun, Xiaolu</creator><creator>Zhao, Xihui</creator><creator>Xu, Peng</creator><creator>Shao, Peiyuan</creator><creator>Zhang, Lei</creator><creator>Li, Qun</creator><creator>Li, Zichao</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8180-0808</orcidid><orcidid>https://orcid.org/0000-0003-0532-105X</orcidid><orcidid>https://orcid.org/0000-0003-2582-3006</orcidid></search><sort><creationdate>20191130</creationdate><title>An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism</title><author>Jiang, Yuhuan ; Pang, Xuening ; Deng, Yujia ; Sun, Xiaolu ; Zhao, Xihui ; Xu, Peng ; Shao, Peiyuan ; Zhang, Lei ; Li, Qun ; Li, Zichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-141718a0783dd268053f195740a577a06e78c69d112600df921cea03075c7a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biodegradability</topic><topic>Calcium alginate</topic><topic>Calcium carbonate</topic><topic>Chromatography</topic><topic>Crosslinking</topic><topic>Flame retardants</topic><topic>Flammability</topic><topic>High temperature</topic><topic>Mass spectrometry</topic><topic>Nonflammable materials</topic><topic>Nonrenewable resources</topic><topic>Polystyrene resins</topic><topic>Polyurethane resins</topic><topic>Raw materials</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Scientific imaging</topic><topic>Sodium</topic><topic>Thermal degradation</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yuhuan</creatorcontrib><creatorcontrib>Pang, Xuening</creatorcontrib><creatorcontrib>Deng, Yujia</creatorcontrib><creatorcontrib>Sun, Xiaolu</creatorcontrib><creatorcontrib>Zhao, Xihui</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Shao, Peiyuan</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Qun</creatorcontrib><creatorcontrib>Li, Zichao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yuhuan</au><au>Pang, Xuening</au><au>Deng, Yujia</au><au>Sun, Xiaolu</au><au>Zhao, Xihui</au><au>Xu, Peng</au><au>Shao, Peiyuan</au><au>Zhang, Lei</au><au>Li, Qun</au><au>Li, Zichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2019-11-30</date><risdate>2019</risdate><volume>11</volume><issue>12</issue><spage>1973</spage><pages>1973-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The worldwide applications of polyurethane (PU) and polystyrene (PS) sponge materials have been causing massive non-renewable resource consumption and huge loss of property and life due to its high flammability. Finding a biodegradable and regenerative sponge material with desirable thermal and flame retardant properties remains challenging to date. In this study, bio-based, renewable calcium alginate hybrid sponge materials (CAS) with high thermal stability and flame retardancy were fabricated through a simple, eco-friendly, in situ, chemical-foaming process at room temperature, followed by a facile and economical post-cross-linking method to obtain the organic-inorganic (CaCO ) hybrid materials. The microstructure of CAS showed desirable porous networks with a porosity rate of 70.3%, indicating that a great amount of raw materials can be saved to achieve remarkable cost control. The sponge materials reached a limiting oxygen index (LOI) of 39, which was greatly improved compared with common sponge. Moreover, with only 5% calcium carbonate content, the initial thermal degradation temperature of CAS was increased by 70 °C (from 150 to 220 °C), compared to that of calcium alginate, which met the requirements of high-temperature resistant and nonflammable materials. The thermal degradation mechanism of CAS was supposed based on the experimental data. The combined results suggest promising prospects for the application of CAS in a range of fields and the sponge materials provide an alternative for the commonly used PU and PS sponge materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31801227</pmid><doi>10.3390/polym11121973</doi><orcidid>https://orcid.org/0000-0001-8180-0808</orcidid><orcidid>https://orcid.org/0000-0003-0532-105X</orcidid><orcidid>https://orcid.org/0000-0003-2582-3006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2019-11, Vol.11 (12), p.1973
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6960948
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Biodegradability
Calcium alginate
Calcium carbonate
Chromatography
Crosslinking
Flame retardants
Flammability
High temperature
Mass spectrometry
Nonflammable materials
Nonrenewable resources
Polystyrene resins
Polyurethane resins
Raw materials
Room temperature
Scanning electron microscopy
Scientific imaging
Sodium
Thermal degradation
Thermal stability
Thermogravimetric analysis
title An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Alginate%20Hybrid%20Sponge%20with%20High%20Thermal%20Stability:%20Its%20Flame%20Retardant%20Properties%20and%20Mechanism&rft.jtitle=Polymers&rft.au=Jiang,%20Yuhuan&rft.date=2019-11-30&rft.volume=11&rft.issue=12&rft.spage=1973&rft.pages=1973-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym11121973&rft_dat=%3Cproquest_pubme%3E2322137337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550255569&rft_id=info:pmid/31801227&rfr_iscdi=true