Concurrent amygdalar and ventromedial prefrontal cortical responses during emotion processing: a meta-analysis of the effects of valence of emotion and passive exposure versus active regulation

Anatomically interconnected, the ventromedial prefrontal cortex (vmPFC) and amygdala interact in emotion processing. However, no meta-analyses have focused on studies that reported concurrent vmPFC and amygdala activities. With activation likelihood estimation (ALE) we examined 100 experiments that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2020-01, Vol.225 (1), p.345-363
Hauptverfasser: Yang, Mo, Tsai, Shang-Jui, Li, Chiang-Shan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 1
container_start_page 345
container_title Brain Structure and Function
container_volume 225
creator Yang, Mo
Tsai, Shang-Jui
Li, Chiang-Shan R.
description Anatomically interconnected, the ventromedial prefrontal cortex (vmPFC) and amygdala interact in emotion processing. However, no meta-analyses have focused on studies that reported concurrent vmPFC and amygdala activities. With activation likelihood estimation (ALE) we examined 100 experiments that reported concurrent vmPFC and amygdala activities, and distinguished responses to positive vs. negative emotions and to passive exposure to vs. active regulation of emotions. We also investigated whole-brain experiments for other regional activities. ALE and contrast analyses identified convergent anterior and posterior vmPFC response to passive positive and negative emotions, respectively, and a subregion in between to mixed emotions. A smaller area in the posterior ventral vmPFC is specifically involved in regulation of negative emotion. Whereas bilateral amygdala was involved during emotional exposure, only the left amygdala showed convergent activities during active regulation of negative emotions. Whole-brain analysis showed convergent activity in left ventral striatum for passive exposure to positive emotions and downregulation of negative emotions, and in the posterior cingulate cortex and ventral precuneus for passive exposure to negative emotions. These findings highlight contrasting, valence-specific subregional vmPFC as well as other regional responses during passive exposure to emotions. The findings also suggest that hyperactivation of the vmPFC is associated with diminished right amygdala activities during regulation of negative emotions. Together, the findings extend the literature by specifying the roles of subregional vmPFC and amygdala activities in emotion processing.
doi_str_mv 10.1007/s00429-019-02007-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6960357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344139749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ccad598ab88cbcf28204c85ddbf2198edeed6e296046b90f1d41c29b78ea77993</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEoqXwAiyQJTZsQn3JzSyQ0BE3qRKbdm1N7MlpqsQOtnPU83i8GXZPe4AuWFgejz__Ho__onjN6HtGaXseKK24LClLg6dEKZ4Up6xrRMmbhj09xrU4KV6EcENpLTsmnxcnIu-wrj4tfm2c1av3aCOBeb81MIEnYA3ZpZR3M5oRJrJ4HLyzMYXa-TjqFHgMi7MBAzGrH-2W4Ozi6GyCncYQUuoDATJjhBIsTPswBuIGEq-R4DCgjnfLHUxoNebwQSBfv0BS2CXydnFh9Zjq8WENBHTMaY_bdYJMvyyeDTAFfHU_nxVXXz5fbr6VFz--ft98uih11Vax1BpMej70Xad7PfCO00p3tTH9wJns0CCaBrlsaNX0kg7MVExz2bcdQttKKc6KjwfdZe1TV3RuD0xq8eMMfq8cjOrfHTteq63bqSZpirpNAu_uBbz7uWKIah6DxmkCi24NigsuW8FYXSX07SP0xq0-9TBTVcWEbKtcET9Q2rsQ0g8di2FUZYeog0NUcoi6c4gS6dCbv59xPPJgiQSIAxCW_Kvo_9z9H9nfZQLOZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344139749</pqid></control><display><type>article</type><title>Concurrent amygdalar and ventromedial prefrontal cortical responses during emotion processing: a meta-analysis of the effects of valence of emotion and passive exposure versus active regulation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Mo ; Tsai, Shang-Jui ; Li, Chiang-Shan R.</creator><creatorcontrib>Yang, Mo ; Tsai, Shang-Jui ; Li, Chiang-Shan R.</creatorcontrib><description>Anatomically interconnected, the ventromedial prefrontal cortex (vmPFC) and amygdala interact in emotion processing. However, no meta-analyses have focused on studies that reported concurrent vmPFC and amygdala activities. With activation likelihood estimation (ALE) we examined 100 experiments that reported concurrent vmPFC and amygdala activities, and distinguished responses to positive vs. negative emotions and to passive exposure to vs. active regulation of emotions. We also investigated whole-brain experiments for other regional activities. ALE and contrast analyses identified convergent anterior and posterior vmPFC response to passive positive and negative emotions, respectively, and a subregion in between to mixed emotions. A smaller area in the posterior ventral vmPFC is specifically involved in regulation of negative emotion. Whereas bilateral amygdala was involved during emotional exposure, only the left amygdala showed convergent activities during active regulation of negative emotions. Whole-brain analysis showed convergent activity in left ventral striatum for passive exposure to positive emotions and downregulation of negative emotions, and in the posterior cingulate cortex and ventral precuneus for passive exposure to negative emotions. These findings highlight contrasting, valence-specific subregional vmPFC as well as other regional responses during passive exposure to emotions. The findings also suggest that hyperactivation of the vmPFC is associated with diminished right amygdala activities during regulation of negative emotions. Together, the findings extend the literature by specifying the roles of subregional vmPFC and amygdala activities in emotion processing.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-019-02007-3</identifier><identifier>PMID: 31863185</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amygdala ; Amygdala - physiology ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Cell Biology ; Cortex (cingulate) ; Cortex (parietal) ; Emotional Regulation - physiology ; Emotions ; Emotions - physiology ; Humans ; Meta-analysis ; Neostriatum ; Neural Pathways - physiology ; Neurology ; Neurosciences ; Original Article ; Prefrontal cortex ; Prefrontal Cortex - physiology ; Systematic review</subject><ispartof>Brain Structure and Function, 2020-01, Vol.225 (1), p.345-363</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Brain Structure and Function is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ccad598ab88cbcf28204c85ddbf2198edeed6e296046b90f1d41c29b78ea77993</citedby><cites>FETCH-LOGICAL-c474t-ccad598ab88cbcf28204c85ddbf2198edeed6e296046b90f1d41c29b78ea77993</cites><orcidid>0000-0002-9393-1212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-019-02007-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-019-02007-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31863185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Mo</creatorcontrib><creatorcontrib>Tsai, Shang-Jui</creatorcontrib><creatorcontrib>Li, Chiang-Shan R.</creatorcontrib><title>Concurrent amygdalar and ventromedial prefrontal cortical responses during emotion processing: a meta-analysis of the effects of valence of emotion and passive exposure versus active regulation</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Anatomically interconnected, the ventromedial prefrontal cortex (vmPFC) and amygdala interact in emotion processing. However, no meta-analyses have focused on studies that reported concurrent vmPFC and amygdala activities. With activation likelihood estimation (ALE) we examined 100 experiments that reported concurrent vmPFC and amygdala activities, and distinguished responses to positive vs. negative emotions and to passive exposure to vs. active regulation of emotions. We also investigated whole-brain experiments for other regional activities. ALE and contrast analyses identified convergent anterior and posterior vmPFC response to passive positive and negative emotions, respectively, and a subregion in between to mixed emotions. A smaller area in the posterior ventral vmPFC is specifically involved in regulation of negative emotion. Whereas bilateral amygdala was involved during emotional exposure, only the left amygdala showed convergent activities during active regulation of negative emotions. Whole-brain analysis showed convergent activity in left ventral striatum for passive exposure to positive emotions and downregulation of negative emotions, and in the posterior cingulate cortex and ventral precuneus for passive exposure to negative emotions. These findings highlight contrasting, valence-specific subregional vmPFC as well as other regional responses during passive exposure to emotions. The findings also suggest that hyperactivation of the vmPFC is associated with diminished right amygdala activities during regulation of negative emotions. Together, the findings extend the literature by specifying the roles of subregional vmPFC and amygdala activities in emotion processing.</description><subject>Amygdala</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Cell Biology</subject><subject>Cortex (cingulate)</subject><subject>Cortex (parietal)</subject><subject>Emotional Regulation - physiology</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Humans</subject><subject>Meta-analysis</subject><subject>Neostriatum</subject><subject>Neural Pathways - physiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - physiology</subject><subject>Systematic review</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kstu1TAQhiMEoqXwAiyQJTZsQn3JzSyQ0BE3qRKbdm1N7MlpqsQOtnPU83i8GXZPe4AuWFgejz__Ho__onjN6HtGaXseKK24LClLg6dEKZ4Up6xrRMmbhj09xrU4KV6EcENpLTsmnxcnIu-wrj4tfm2c1av3aCOBeb81MIEnYA3ZpZR3M5oRJrJ4HLyzMYXa-TjqFHgMi7MBAzGrH-2W4Ozi6GyCncYQUuoDATJjhBIsTPswBuIGEq-R4DCgjnfLHUxoNebwQSBfv0BS2CXydnFh9Zjq8WENBHTMaY_bdYJMvyyeDTAFfHU_nxVXXz5fbr6VFz--ft98uih11Vax1BpMej70Xad7PfCO00p3tTH9wJns0CCaBrlsaNX0kg7MVExz2bcdQttKKc6KjwfdZe1TV3RuD0xq8eMMfq8cjOrfHTteq63bqSZpirpNAu_uBbz7uWKIah6DxmkCi24NigsuW8FYXSX07SP0xq0-9TBTVcWEbKtcET9Q2rsQ0g8di2FUZYeog0NUcoi6c4gS6dCbv59xPPJgiQSIAxCW_Kvo_9z9H9nfZQLOZg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yang, Mo</creator><creator>Tsai, Shang-Jui</creator><creator>Li, Chiang-Shan R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9393-1212</orcidid></search><sort><creationdate>20200101</creationdate><title>Concurrent amygdalar and ventromedial prefrontal cortical responses during emotion processing: a meta-analysis of the effects of valence of emotion and passive exposure versus active regulation</title><author>Yang, Mo ; Tsai, Shang-Jui ; Li, Chiang-Shan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ccad598ab88cbcf28204c85ddbf2198edeed6e296046b90f1d41c29b78ea77993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amygdala</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Cell Biology</topic><topic>Cortex (cingulate)</topic><topic>Cortex (parietal)</topic><topic>Emotional Regulation - physiology</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Humans</topic><topic>Meta-analysis</topic><topic>Neostriatum</topic><topic>Neural Pathways - physiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - physiology</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Mo</creatorcontrib><creatorcontrib>Tsai, Shang-Jui</creatorcontrib><creatorcontrib>Li, Chiang-Shan R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Mo</au><au>Tsai, Shang-Jui</au><au>Li, Chiang-Shan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent amygdalar and ventromedial prefrontal cortical responses during emotion processing: a meta-analysis of the effects of valence of emotion and passive exposure versus active regulation</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>225</volume><issue>1</issue><spage>345</spage><epage>363</epage><pages>345-363</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Anatomically interconnected, the ventromedial prefrontal cortex (vmPFC) and amygdala interact in emotion processing. However, no meta-analyses have focused on studies that reported concurrent vmPFC and amygdala activities. With activation likelihood estimation (ALE) we examined 100 experiments that reported concurrent vmPFC and amygdala activities, and distinguished responses to positive vs. negative emotions and to passive exposure to vs. active regulation of emotions. We also investigated whole-brain experiments for other regional activities. ALE and contrast analyses identified convergent anterior and posterior vmPFC response to passive positive and negative emotions, respectively, and a subregion in between to mixed emotions. A smaller area in the posterior ventral vmPFC is specifically involved in regulation of negative emotion. Whereas bilateral amygdala was involved during emotional exposure, only the left amygdala showed convergent activities during active regulation of negative emotions. Whole-brain analysis showed convergent activity in left ventral striatum for passive exposure to positive emotions and downregulation of negative emotions, and in the posterior cingulate cortex and ventral precuneus for passive exposure to negative emotions. These findings highlight contrasting, valence-specific subregional vmPFC as well as other regional responses during passive exposure to emotions. The findings also suggest that hyperactivation of the vmPFC is associated with diminished right amygdala activities during regulation of negative emotions. Together, the findings extend the literature by specifying the roles of subregional vmPFC and amygdala activities in emotion processing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31863185</pmid><doi>10.1007/s00429-019-02007-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9393-1212</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2020-01, Vol.225 (1), p.345-363
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6960357
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amygdala
Amygdala - physiology
Animals
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Cell Biology
Cortex (cingulate)
Cortex (parietal)
Emotional Regulation - physiology
Emotions
Emotions - physiology
Humans
Meta-analysis
Neostriatum
Neural Pathways - physiology
Neurology
Neurosciences
Original Article
Prefrontal cortex
Prefrontal Cortex - physiology
Systematic review
title Concurrent amygdalar and ventromedial prefrontal cortical responses during emotion processing: a meta-analysis of the effects of valence of emotion and passive exposure versus active regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20amygdalar%20and%20ventromedial%20prefrontal%20cortical%20responses%20during%20emotion%20processing:%20a%20meta-analysis%20of%20the%20effects%20of%20valence%20of%20emotion%20and%20passive%20exposure%20versus%20active%20regulation&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Yang,%20Mo&rft.date=2020-01-01&rft.volume=225&rft.issue=1&rft.spage=345&rft.epage=363&rft.pages=345-363&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-019-02007-3&rft_dat=%3Cproquest_pubme%3E2344139749%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344139749&rft_id=info:pmid/31863185&rfr_iscdi=true