VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling
RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what ext...
Gespeichert in:
Veröffentlicht in: | Circulation research 2017-04, Vol.120 (9), p.1414-1425 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1425 |
---|---|
container_issue | 9 |
container_start_page | 1414 |
container_title | Circulation research |
container_volume | 120 |
creator | Heinolainen, Krista Karaman, Sinem D’Amico, Gabriela Tammela, Tuomas Sormunen, Raija Eklund, Lauri Alitalo, Kari Zarkada, Georgia |
description | RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown.
OBJECTIVE:To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability.
METHODS AND RESULTS:Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell–cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3.
CONCLUSIONS:VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability. |
doi_str_mv | 10.1161/CIRCRESAHA.116.310477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006889427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6597-403011144ba120c2f91df52dca05aaf72351accff901161bbcd9efc55cc8117f3</originalsourceid><addsrcrecordid>eNqFkVtv1DAQhS0EokvhJ4Ai8cJLWo8v6_gFaRVtL2oRaAt9tRzH3k3xxq2dUO2_x-mWcnlBsmTP-DtHczQIvQV8BDCH4_p8Va-WV4uzxVQfUcBMiGdoBpywknEBz9EMYyxLQSk-QK9SusEYGCXyJTogFZH5sBm6uF6enqxo8Sm0o9eDTcW1TiY_Y_HFxq3VTee7YVc0u6IO_RCD912_LibV8YOUFFfdutdT9zV64bRP9s3jfYi-nSy_1mfl5efT83pxWZo5l6JkmGIAYKzRQLAhTkLrOGmNxlxrJwjloI1xTuIpadOYVlpnODemAhCOHqKPe9_bsdna1tg8l_bqNnZbHXcq6E79_dN3G7UOP9RccokxzQYfHg1iuBttGtS2S8Z6r3sbxqSgEhVUhEnI6Pt_0Jswxpw3KYLxvKokIyJTfE-ZGFKK1j0NA1hNIdTvdU212q8r6979meRJ9Ws_GZB74D74wcb03Y_3NqqN1X7Y_Mf8J0MNorY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006889427</pqid></control><display><type>article</type><title>VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Ovid Autoload</source><creator>Heinolainen, Krista ; Karaman, Sinem ; D’Amico, Gabriela ; Tammela, Tuomas ; Sormunen, Raija ; Eklund, Lauri ; Alitalo, Kari ; Zarkada, Georgia</creator><creatorcontrib>Heinolainen, Krista ; Karaman, Sinem ; D’Amico, Gabriela ; Tammela, Tuomas ; Sormunen, Raija ; Eklund, Lauri ; Alitalo, Kari ; Zarkada, Georgia</creatorcontrib><description>RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown.
OBJECTIVE:To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability.
METHODS AND RESULTS:Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell–cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3.
CONCLUSIONS:VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.116.310477</identifier><identifier>PMID: 28298294</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Adherens Junctions - metabolism ; Angiogenesis ; Animals ; Antigens, CD - metabolism ; Cadherins ; Cadherins - metabolism ; Capillary Permeability - drug effects ; Carcinoma, Lewis Lung - blood supply ; Carcinoma, Lewis Lung - metabolism ; Cell junctions ; Cells, Cultured ; Clonal deletion ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Female ; Fibrinogen ; Gene deletion ; Gene silencing ; Genotype ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Kidneys ; Leakage ; Localization ; Lung - blood supply ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; Neovascularization, Pathologic ; Neovascularization, Physiologic ; Permeability ; Phenotype ; Phosphorylation ; Retinal Vessels - drug effects ; Retinal Vessels - metabolism ; Rodents ; Signal Transduction - drug effects ; Tight Junctions - metabolism ; Transfection ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor A - pharmacology ; Vascular Endothelial Growth Factor Receptor-2 - deficiency ; Vascular Endothelial Growth Factor Receptor-2 - genetics ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; Vascular Endothelial Growth Factor Receptor-3 - deficiency ; Vascular Endothelial Growth Factor Receptor-3 - genetics ; Vascular Endothelial Growth Factor Receptor-3 - metabolism ; Vascular endothelial growth factor receptors</subject><ispartof>Circulation research, 2017-04, Vol.120 (9), p.1414-1425</ispartof><rights>2017 American Heart Association, Inc.</rights><rights>Copyright Lippincott Williams & Wilkins Ovid Technologies Apr 28, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6597-403011144ba120c2f91df52dca05aaf72351accff901161bbcd9efc55cc8117f3</citedby><cites>FETCH-LOGICAL-c6597-403011144ba120c2f91df52dca05aaf72351accff901161bbcd9efc55cc8117f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3673,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28298294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinolainen, Krista</creatorcontrib><creatorcontrib>Karaman, Sinem</creatorcontrib><creatorcontrib>D’Amico, Gabriela</creatorcontrib><creatorcontrib>Tammela, Tuomas</creatorcontrib><creatorcontrib>Sormunen, Raija</creatorcontrib><creatorcontrib>Eklund, Lauri</creatorcontrib><creatorcontrib>Alitalo, Kari</creatorcontrib><creatorcontrib>Zarkada, Georgia</creatorcontrib><title>VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown.
OBJECTIVE:To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability.
METHODS AND RESULTS:Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell–cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3.
CONCLUSIONS:VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.</description><subject>Adherens Junctions - metabolism</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Cadherins</subject><subject>Cadherins - metabolism</subject><subject>Capillary Permeability - drug effects</subject><subject>Carcinoma, Lewis Lung - blood supply</subject><subject>Carcinoma, Lewis Lung - metabolism</subject><subject>Cell junctions</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Female</subject><subject>Fibrinogen</subject><subject>Gene deletion</subject><subject>Gene silencing</subject><subject>Genotype</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Kidneys</subject><subject>Leakage</subject><subject>Localization</subject><subject>Lung - blood supply</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neovascularization, Pathologic</subject><subject>Neovascularization, Physiologic</subject><subject>Permeability</subject><subject>Phenotype</subject><subject>Phosphorylation</subject><subject>Retinal Vessels - drug effects</subject><subject>Retinal Vessels - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Tight Junctions - metabolism</subject><subject>Transfection</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor A - pharmacology</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - deficiency</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-3 - deficiency</subject><subject>Vascular Endothelial Growth Factor Receptor-3 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-3 - metabolism</subject><subject>Vascular endothelial growth factor receptors</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVtv1DAQhS0EokvhJ4Ai8cJLWo8v6_gFaRVtL2oRaAt9tRzH3k3xxq2dUO2_x-mWcnlBsmTP-DtHczQIvQV8BDCH4_p8Va-WV4uzxVQfUcBMiGdoBpywknEBz9EMYyxLQSk-QK9SusEYGCXyJTogFZH5sBm6uF6enqxo8Sm0o9eDTcW1TiY_Y_HFxq3VTee7YVc0u6IO_RCD912_LibV8YOUFFfdutdT9zV64bRP9s3jfYi-nSy_1mfl5efT83pxWZo5l6JkmGIAYKzRQLAhTkLrOGmNxlxrJwjloI1xTuIpadOYVlpnODemAhCOHqKPe9_bsdna1tg8l_bqNnZbHXcq6E79_dN3G7UOP9RccokxzQYfHg1iuBttGtS2S8Z6r3sbxqSgEhVUhEnI6Pt_0Jswxpw3KYLxvKokIyJTfE-ZGFKK1j0NA1hNIdTvdU212q8r6979meRJ9Ws_GZB74D74wcb03Y_3NqqN1X7Y_Mf8J0MNorY</recordid><startdate>20170428</startdate><enddate>20170428</enddate><creator>Heinolainen, Krista</creator><creator>Karaman, Sinem</creator><creator>D’Amico, Gabriela</creator><creator>Tammela, Tuomas</creator><creator>Sormunen, Raija</creator><creator>Eklund, Lauri</creator><creator>Alitalo, Kari</creator><creator>Zarkada, Georgia</creator><general>American Heart Association, Inc</general><general>Lippincott Williams & Wilkins Ovid Technologies</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170428</creationdate><title>VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling</title><author>Heinolainen, Krista ; Karaman, Sinem ; D’Amico, Gabriela ; Tammela, Tuomas ; Sormunen, Raija ; Eklund, Lauri ; Alitalo, Kari ; Zarkada, Georgia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6597-403011144ba120c2f91df52dca05aaf72351accff901161bbcd9efc55cc8117f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adherens Junctions - metabolism</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Cadherins</topic><topic>Cadherins - metabolism</topic><topic>Capillary Permeability - drug effects</topic><topic>Carcinoma, Lewis Lung - blood supply</topic><topic>Carcinoma, Lewis Lung - metabolism</topic><topic>Cell junctions</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Female</topic><topic>Fibrinogen</topic><topic>Gene deletion</topic><topic>Gene silencing</topic><topic>Genotype</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Kidneys</topic><topic>Leakage</topic><topic>Localization</topic><topic>Lung - blood supply</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neovascularization, Pathologic</topic><topic>Neovascularization, Physiologic</topic><topic>Permeability</topic><topic>Phenotype</topic><topic>Phosphorylation</topic><topic>Retinal Vessels - drug effects</topic><topic>Retinal Vessels - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Tight Junctions - metabolism</topic><topic>Transfection</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor A - pharmacology</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - deficiency</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-3 - deficiency</topic><topic>Vascular Endothelial Growth Factor Receptor-3 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-3 - metabolism</topic><topic>Vascular endothelial growth factor receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinolainen, Krista</creatorcontrib><creatorcontrib>Karaman, Sinem</creatorcontrib><creatorcontrib>D’Amico, Gabriela</creatorcontrib><creatorcontrib>Tammela, Tuomas</creatorcontrib><creatorcontrib>Sormunen, Raija</creatorcontrib><creatorcontrib>Eklund, Lauri</creatorcontrib><creatorcontrib>Alitalo, Kari</creatorcontrib><creatorcontrib>Zarkada, Georgia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinolainen, Krista</au><au>Karaman, Sinem</au><au>D’Amico, Gabriela</au><au>Tammela, Tuomas</au><au>Sormunen, Raija</au><au>Eklund, Lauri</au><au>Alitalo, Kari</au><au>Zarkada, Georgia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2017-04-28</date><risdate>2017</risdate><volume>120</volume><issue>9</issue><spage>1414</spage><epage>1425</epage><pages>1414-1425</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown.
OBJECTIVE:To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability.
METHODS AND RESULTS:Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell–cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3.
CONCLUSIONS:VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>28298294</pmid><doi>10.1161/CIRCRESAHA.116.310477</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2017-04, Vol.120 (9), p.1414-1425 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959003 |
source | MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Ovid Autoload |
subjects | Adherens Junctions - metabolism Angiogenesis Animals Antigens, CD - metabolism Cadherins Cadherins - metabolism Capillary Permeability - drug effects Carcinoma, Lewis Lung - blood supply Carcinoma, Lewis Lung - metabolism Cell junctions Cells, Cultured Clonal deletion Endothelial cells Endothelial Cells - drug effects Endothelial Cells - metabolism Female Fibrinogen Gene deletion Gene silencing Genotype Human Umbilical Vein Endothelial Cells - metabolism Humans Kidneys Leakage Localization Lung - blood supply Male Mice, Inbred C57BL Mice, Knockout Neovascularization, Pathologic Neovascularization, Physiologic Permeability Phenotype Phosphorylation Retinal Vessels - drug effects Retinal Vessels - metabolism Rodents Signal Transduction - drug effects Tight Junctions - metabolism Transfection Tumors Vascular endothelial growth factor Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor A - pharmacology Vascular Endothelial Growth Factor Receptor-2 - deficiency Vascular Endothelial Growth Factor Receptor-2 - genetics Vascular Endothelial Growth Factor Receptor-2 - metabolism Vascular Endothelial Growth Factor Receptor-3 - deficiency Vascular Endothelial Growth Factor Receptor-3 - genetics Vascular Endothelial Growth Factor Receptor-3 - metabolism Vascular endothelial growth factor receptors |
title | VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VEGFR3%20Modulates%20Vascular%20Permeability%20by%20Controlling%20VEGF/VEGFR2%20Signaling&rft.jtitle=Circulation%20research&rft.au=Heinolainen,%20Krista&rft.date=2017-04-28&rft.volume=120&rft.issue=9&rft.spage=1414&rft.epage=1425&rft.pages=1414-1425&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.116.310477&rft_dat=%3Cproquest_pubme%3E2006889427%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006889427&rft_id=info:pmid/28298294&rfr_iscdi=true |