VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling

RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2017-04, Vol.120 (9), p.1414-1425
Hauptverfasser: Heinolainen, Krista, Karaman, Sinem, D’Amico, Gabriela, Tammela, Tuomas, Sormunen, Raija, Eklund, Lauri, Alitalo, Kari, Zarkada, Georgia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1425
container_issue 9
container_start_page 1414
container_title Circulation research
container_volume 120
creator Heinolainen, Krista
Karaman, Sinem
D’Amico, Gabriela
Tammela, Tuomas
Sormunen, Raija
Eklund, Lauri
Alitalo, Kari
Zarkada, Georgia
description RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown. OBJECTIVE:To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability. METHODS AND RESULTS:Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell–cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3. CONCLUSIONS:VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.
doi_str_mv 10.1161/CIRCRESAHA.116.310477
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006889427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6597-403011144ba120c2f91df52dca05aaf72351accff901161bbcd9efc55cc8117f3</originalsourceid><addsrcrecordid>eNqFkVtv1DAQhS0EokvhJ4Ai8cJLWo8v6_gFaRVtL2oRaAt9tRzH3k3xxq2dUO2_x-mWcnlBsmTP-DtHczQIvQV8BDCH4_p8Va-WV4uzxVQfUcBMiGdoBpywknEBz9EMYyxLQSk-QK9SusEYGCXyJTogFZH5sBm6uF6enqxo8Sm0o9eDTcW1TiY_Y_HFxq3VTee7YVc0u6IO_RCD912_LibV8YOUFFfdutdT9zV64bRP9s3jfYi-nSy_1mfl5efT83pxWZo5l6JkmGIAYKzRQLAhTkLrOGmNxlxrJwjloI1xTuIpadOYVlpnODemAhCOHqKPe9_bsdna1tg8l_bqNnZbHXcq6E79_dN3G7UOP9RccokxzQYfHg1iuBttGtS2S8Z6r3sbxqSgEhVUhEnI6Pt_0Jswxpw3KYLxvKokIyJTfE-ZGFKK1j0NA1hNIdTvdU212q8r6979meRJ9Ws_GZB74D74wcb03Y_3NqqN1X7Y_Mf8J0MNorY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006889427</pqid></control><display><type>article</type><title>VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Ovid Autoload</source><creator>Heinolainen, Krista ; Karaman, Sinem ; D’Amico, Gabriela ; Tammela, Tuomas ; Sormunen, Raija ; Eklund, Lauri ; Alitalo, Kari ; Zarkada, Georgia</creator><creatorcontrib>Heinolainen, Krista ; Karaman, Sinem ; D’Amico, Gabriela ; Tammela, Tuomas ; Sormunen, Raija ; Eklund, Lauri ; Alitalo, Kari ; Zarkada, Georgia</creatorcontrib><description>RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown. OBJECTIVE:To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability. METHODS AND RESULTS:Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell–cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3. CONCLUSIONS:VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.116.310477</identifier><identifier>PMID: 28298294</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Adherens Junctions - metabolism ; Angiogenesis ; Animals ; Antigens, CD - metabolism ; Cadherins ; Cadherins - metabolism ; Capillary Permeability - drug effects ; Carcinoma, Lewis Lung - blood supply ; Carcinoma, Lewis Lung - metabolism ; Cell junctions ; Cells, Cultured ; Clonal deletion ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Female ; Fibrinogen ; Gene deletion ; Gene silencing ; Genotype ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Kidneys ; Leakage ; Localization ; Lung - blood supply ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; Neovascularization, Pathologic ; Neovascularization, Physiologic ; Permeability ; Phenotype ; Phosphorylation ; Retinal Vessels - drug effects ; Retinal Vessels - metabolism ; Rodents ; Signal Transduction - drug effects ; Tight Junctions - metabolism ; Transfection ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor A - pharmacology ; Vascular Endothelial Growth Factor Receptor-2 - deficiency ; Vascular Endothelial Growth Factor Receptor-2 - genetics ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; Vascular Endothelial Growth Factor Receptor-3 - deficiency ; Vascular Endothelial Growth Factor Receptor-3 - genetics ; Vascular Endothelial Growth Factor Receptor-3 - metabolism ; Vascular endothelial growth factor receptors</subject><ispartof>Circulation research, 2017-04, Vol.120 (9), p.1414-1425</ispartof><rights>2017 American Heart Association, Inc.</rights><rights>Copyright Lippincott Williams &amp; Wilkins Ovid Technologies Apr 28, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6597-403011144ba120c2f91df52dca05aaf72351accff901161bbcd9efc55cc8117f3</citedby><cites>FETCH-LOGICAL-c6597-403011144ba120c2f91df52dca05aaf72351accff901161bbcd9efc55cc8117f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3673,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28298294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinolainen, Krista</creatorcontrib><creatorcontrib>Karaman, Sinem</creatorcontrib><creatorcontrib>D’Amico, Gabriela</creatorcontrib><creatorcontrib>Tammela, Tuomas</creatorcontrib><creatorcontrib>Sormunen, Raija</creatorcontrib><creatorcontrib>Eklund, Lauri</creatorcontrib><creatorcontrib>Alitalo, Kari</creatorcontrib><creatorcontrib>Zarkada, Georgia</creatorcontrib><title>VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown. OBJECTIVE:To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability. METHODS AND RESULTS:Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell–cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3. CONCLUSIONS:VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.</description><subject>Adherens Junctions - metabolism</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Cadherins</subject><subject>Cadherins - metabolism</subject><subject>Capillary Permeability - drug effects</subject><subject>Carcinoma, Lewis Lung - blood supply</subject><subject>Carcinoma, Lewis Lung - metabolism</subject><subject>Cell junctions</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Female</subject><subject>Fibrinogen</subject><subject>Gene deletion</subject><subject>Gene silencing</subject><subject>Genotype</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Kidneys</subject><subject>Leakage</subject><subject>Localization</subject><subject>Lung - blood supply</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neovascularization, Pathologic</subject><subject>Neovascularization, Physiologic</subject><subject>Permeability</subject><subject>Phenotype</subject><subject>Phosphorylation</subject><subject>Retinal Vessels - drug effects</subject><subject>Retinal Vessels - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Tight Junctions - metabolism</subject><subject>Transfection</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor A - pharmacology</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - deficiency</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-3 - deficiency</subject><subject>Vascular Endothelial Growth Factor Receptor-3 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-3 - metabolism</subject><subject>Vascular endothelial growth factor receptors</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVtv1DAQhS0EokvhJ4Ai8cJLWo8v6_gFaRVtL2oRaAt9tRzH3k3xxq2dUO2_x-mWcnlBsmTP-DtHczQIvQV8BDCH4_p8Va-WV4uzxVQfUcBMiGdoBpywknEBz9EMYyxLQSk-QK9SusEYGCXyJTogFZH5sBm6uF6enqxo8Sm0o9eDTcW1TiY_Y_HFxq3VTee7YVc0u6IO_RCD912_LibV8YOUFFfdutdT9zV64bRP9s3jfYi-nSy_1mfl5efT83pxWZo5l6JkmGIAYKzRQLAhTkLrOGmNxlxrJwjloI1xTuIpadOYVlpnODemAhCOHqKPe9_bsdna1tg8l_bqNnZbHXcq6E79_dN3G7UOP9RccokxzQYfHg1iuBttGtS2S8Z6r3sbxqSgEhVUhEnI6Pt_0Jswxpw3KYLxvKokIyJTfE-ZGFKK1j0NA1hNIdTvdU212q8r6979meRJ9Ws_GZB74D74wcb03Y_3NqqN1X7Y_Mf8J0MNorY</recordid><startdate>20170428</startdate><enddate>20170428</enddate><creator>Heinolainen, Krista</creator><creator>Karaman, Sinem</creator><creator>D’Amico, Gabriela</creator><creator>Tammela, Tuomas</creator><creator>Sormunen, Raija</creator><creator>Eklund, Lauri</creator><creator>Alitalo, Kari</creator><creator>Zarkada, Georgia</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170428</creationdate><title>VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling</title><author>Heinolainen, Krista ; Karaman, Sinem ; D’Amico, Gabriela ; Tammela, Tuomas ; Sormunen, Raija ; Eklund, Lauri ; Alitalo, Kari ; Zarkada, Georgia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6597-403011144ba120c2f91df52dca05aaf72351accff901161bbcd9efc55cc8117f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adherens Junctions - metabolism</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Cadherins</topic><topic>Cadherins - metabolism</topic><topic>Capillary Permeability - drug effects</topic><topic>Carcinoma, Lewis Lung - blood supply</topic><topic>Carcinoma, Lewis Lung - metabolism</topic><topic>Cell junctions</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Female</topic><topic>Fibrinogen</topic><topic>Gene deletion</topic><topic>Gene silencing</topic><topic>Genotype</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Kidneys</topic><topic>Leakage</topic><topic>Localization</topic><topic>Lung - blood supply</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neovascularization, Pathologic</topic><topic>Neovascularization, Physiologic</topic><topic>Permeability</topic><topic>Phenotype</topic><topic>Phosphorylation</topic><topic>Retinal Vessels - drug effects</topic><topic>Retinal Vessels - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Tight Junctions - metabolism</topic><topic>Transfection</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor A - pharmacology</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - deficiency</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-3 - deficiency</topic><topic>Vascular Endothelial Growth Factor Receptor-3 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-3 - metabolism</topic><topic>Vascular endothelial growth factor receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinolainen, Krista</creatorcontrib><creatorcontrib>Karaman, Sinem</creatorcontrib><creatorcontrib>D’Amico, Gabriela</creatorcontrib><creatorcontrib>Tammela, Tuomas</creatorcontrib><creatorcontrib>Sormunen, Raija</creatorcontrib><creatorcontrib>Eklund, Lauri</creatorcontrib><creatorcontrib>Alitalo, Kari</creatorcontrib><creatorcontrib>Zarkada, Georgia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinolainen, Krista</au><au>Karaman, Sinem</au><au>D’Amico, Gabriela</au><au>Tammela, Tuomas</au><au>Sormunen, Raija</au><au>Eklund, Lauri</au><au>Alitalo, Kari</au><au>Zarkada, Georgia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2017-04-28</date><risdate>2017</risdate><volume>120</volume><issue>9</issue><spage>1414</spage><epage>1425</epage><pages>1414-1425</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>RATIONALE:Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown. OBJECTIVE:To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability. METHODS AND RESULTS:Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell–cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3. CONCLUSIONS:VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>28298294</pmid><doi>10.1161/CIRCRESAHA.116.310477</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2017-04, Vol.120 (9), p.1414-1425
issn 0009-7330
1524-4571
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959003
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Ovid Autoload
subjects Adherens Junctions - metabolism
Angiogenesis
Animals
Antigens, CD - metabolism
Cadherins
Cadherins - metabolism
Capillary Permeability - drug effects
Carcinoma, Lewis Lung - blood supply
Carcinoma, Lewis Lung - metabolism
Cell junctions
Cells, Cultured
Clonal deletion
Endothelial cells
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Female
Fibrinogen
Gene deletion
Gene silencing
Genotype
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Kidneys
Leakage
Localization
Lung - blood supply
Male
Mice, Inbred C57BL
Mice, Knockout
Neovascularization, Pathologic
Neovascularization, Physiologic
Permeability
Phenotype
Phosphorylation
Retinal Vessels - drug effects
Retinal Vessels - metabolism
Rodents
Signal Transduction - drug effects
Tight Junctions - metabolism
Transfection
Tumors
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor A - pharmacology
Vascular Endothelial Growth Factor Receptor-2 - deficiency
Vascular Endothelial Growth Factor Receptor-2 - genetics
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Vascular Endothelial Growth Factor Receptor-3 - deficiency
Vascular Endothelial Growth Factor Receptor-3 - genetics
Vascular Endothelial Growth Factor Receptor-3 - metabolism
Vascular endothelial growth factor receptors
title VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VEGFR3%20Modulates%20Vascular%20Permeability%20by%20Controlling%20VEGF/VEGFR2%20Signaling&rft.jtitle=Circulation%20research&rft.au=Heinolainen,%20Krista&rft.date=2017-04-28&rft.volume=120&rft.issue=9&rft.spage=1414&rft.epage=1425&rft.pages=1414-1425&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.116.310477&rft_dat=%3Cproquest_pubme%3E2006889427%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006889427&rft_id=info:pmid/28298294&rfr_iscdi=true