Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae
The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular and cell biology of lipids 2020-02, Vol.1865 (2), p.158581-158581, Article 158581 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158581 |
---|---|
container_issue | 2 |
container_start_page | 158581 |
container_title | Biochimica et biophysica acta. Molecular and cell biology of lipids |
container_volume | 1865 |
creator | Huang, Yannan Takar, Mehmet Best, Jordan T. Graham, Todd R. |
description | The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional asymmetry between the two leaflets important for signal transduction, cytokinesis, vesicular transport, and host-pathogen interactions. Most P4-ATPases function as a heterodimer with a β-subunit from the Cdc50 protein family, but Neo1 from Saccharomyces cerevisiae and its metazoan orthologs lack a β-subunit requirement and it is unclear how these proteins transport substrate. Here we tested if residues linked to lipid substrate recognition in other P4-ATPases also contribute to Neo1 function in budding yeast. Point mutations altering entry gate residues in the first (Q209A) and fourth (S457Q) transmembrane segments of Neo1, where phospholipid substrate would initially be selected, disrupt PS and PE membrane asymmetry, but do not perturb growth of cells. Mutation of both entry gate residues inactivates Neo1, and cells expressing this variant are inviable. We also identified a gain-of-function mutation in the second transmembrane segment of Neo1 (Neo1[Y222S]), predicted to help form the entry gate, that substantially enhances Neo1's ability to replace the function of a well characterized phospholipid flippase, Drs2, in establishing PS and PE asymmetry. These results suggest a common mechanism for substrate recognition in widely divergent P4-ATPases.
•The P4-ATPase Neo1 transports phospholipid to control membrane asymmetry.•Positionally conserved residues in Neo1 are critical for substrate recognition.•A new entry gate residue (Y222) identified in Neo1 second transmembrane segment.•Neo1 mutations enhancing phosphatidylserine recognition suppress drs2∆. |
doi_str_mv | 10.1016/j.bbalip.2019.158581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6957724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138819811930232X</els_id><sourcerecordid>2431847117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-87cf15662e396abc928f0f59cfbdaecb591d1644b943cc373e5a8d2c7c2fc633</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwDxDykUuWjB079gWpWpUPqYJK7N2yJ5OuV0m82NmV9t_jakuBCwfLI80773w8VfUWmhU0oD7sVt67MexXvAGzAqmlhmfVJejO1FyBfl5ioXUNRsNF9SrnXdOAFEK-rC4EdFpx3VxW0zrOmdKRejYRbt0c8sTiwPbbmMsr_qFn-eDzktxCLBHG-zksIc7Mn9iyJXbX1tebO5eJfaMIbEhxYj8cFq8SnZAyQ0p0DDk4el29GNyY6c3jf1VtPt1s1l_q2--fv66vb2uUii-17nAAqRQnYZTzaLgemkEaHHzvCL000INqW29agSg6QdLpnmOHfEAlxFX18Wy7P_iJeqS5TD_afQqTSycbXbD_ZuawtffxaJWRXcfbYvD-0SDFnwfKi51CRhpHN1M8ZFskoNsOoCvS9izFFHNONDy1gcY-gLI7ewZlH0DZM6hS9u7vEZ-KfpP5swOVOx0DJZsx0IzUhwJhsX0M_-_wCxx7qWY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431847117</pqid></control><display><type>article</type><title>Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Huang, Yannan ; Takar, Mehmet ; Best, Jordan T. ; Graham, Todd R.</creator><creatorcontrib>Huang, Yannan ; Takar, Mehmet ; Best, Jordan T. ; Graham, Todd R.</creatorcontrib><description>The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional asymmetry between the two leaflets important for signal transduction, cytokinesis, vesicular transport, and host-pathogen interactions. Most P4-ATPases function as a heterodimer with a β-subunit from the Cdc50 protein family, but Neo1 from Saccharomyces cerevisiae and its metazoan orthologs lack a β-subunit requirement and it is unclear how these proteins transport substrate. Here we tested if residues linked to lipid substrate recognition in other P4-ATPases also contribute to Neo1 function in budding yeast. Point mutations altering entry gate residues in the first (Q209A) and fourth (S457Q) transmembrane segments of Neo1, where phospholipid substrate would initially be selected, disrupt PS and PE membrane asymmetry, but do not perturb growth of cells. Mutation of both entry gate residues inactivates Neo1, and cells expressing this variant are inviable. We also identified a gain-of-function mutation in the second transmembrane segment of Neo1 (Neo1[Y222S]), predicted to help form the entry gate, that substantially enhances Neo1's ability to replace the function of a well characterized phospholipid flippase, Drs2, in establishing PS and PE asymmetry. These results suggest a common mechanism for substrate recognition in widely divergent P4-ATPases.
•The P4-ATPase Neo1 transports phospholipid to control membrane asymmetry.•Positionally conserved residues in Neo1 are critical for substrate recognition.•A new entry gate residue (Y222) identified in Neo1 second transmembrane segment.•Neo1 mutations enhancing phosphatidylserine recognition suppress drs2∆.</description><identifier>ISSN: 1388-1981</identifier><identifier>EISSN: 1879-2618</identifier><identifier>DOI: 10.1016/j.bbalip.2019.158581</identifier><identifier>PMID: 31786280</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; adenosinetriphosphatase ; Animalia ; asymmetry ; ATP9A ; Calcium-Transporting ATPases - genetics ; Calcium-Transporting ATPases - metabolism ; cell growth ; Cell Membrane - metabolism ; cytokinesis ; Gain of Function Mutation ; host-pathogen relationships ; Membrane asymmetry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Mutagenesis ; Neo1 ; P4-ATPase ; Phosphatidylethanolamine ; phosphatidylethanolamines ; Phosphatidylethanolamines - metabolism ; Phosphatidylserine ; phosphatidylserines ; Phosphatidylserines - metabolism ; Phospholipid Transfer Proteins - genetics ; Phospholipid Transfer Proteins - metabolism ; Point Mutation ; proteins ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; signal transduction ; Substrate Specificity - genetics ; yeasts</subject><ispartof>Biochimica et biophysica acta. Molecular and cell biology of lipids, 2020-02, Vol.1865 (2), p.158581-158581, Article 158581</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-87cf15662e396abc928f0f59cfbdaecb591d1644b943cc373e5a8d2c7c2fc633</citedby><cites>FETCH-LOGICAL-c562t-87cf15662e396abc928f0f59cfbdaecb591d1644b943cc373e5a8d2c7c2fc633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S138819811930232X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31786280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yannan</creatorcontrib><creatorcontrib>Takar, Mehmet</creatorcontrib><creatorcontrib>Best, Jordan T.</creatorcontrib><creatorcontrib>Graham, Todd R.</creatorcontrib><title>Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae</title><title>Biochimica et biophysica acta. Molecular and cell biology of lipids</title><addtitle>Biochim Biophys Acta Mol Cell Biol Lipids</addtitle><description>The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional asymmetry between the two leaflets important for signal transduction, cytokinesis, vesicular transport, and host-pathogen interactions. Most P4-ATPases function as a heterodimer with a β-subunit from the Cdc50 protein family, but Neo1 from Saccharomyces cerevisiae and its metazoan orthologs lack a β-subunit requirement and it is unclear how these proteins transport substrate. Here we tested if residues linked to lipid substrate recognition in other P4-ATPases also contribute to Neo1 function in budding yeast. Point mutations altering entry gate residues in the first (Q209A) and fourth (S457Q) transmembrane segments of Neo1, where phospholipid substrate would initially be selected, disrupt PS and PE membrane asymmetry, but do not perturb growth of cells. Mutation of both entry gate residues inactivates Neo1, and cells expressing this variant are inviable. We also identified a gain-of-function mutation in the second transmembrane segment of Neo1 (Neo1[Y222S]), predicted to help form the entry gate, that substantially enhances Neo1's ability to replace the function of a well characterized phospholipid flippase, Drs2, in establishing PS and PE asymmetry. These results suggest a common mechanism for substrate recognition in widely divergent P4-ATPases.
•The P4-ATPase Neo1 transports phospholipid to control membrane asymmetry.•Positionally conserved residues in Neo1 are critical for substrate recognition.•A new entry gate residue (Y222) identified in Neo1 second transmembrane segment.•Neo1 mutations enhancing phosphatidylserine recognition suppress drs2∆.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>adenosinetriphosphatase</subject><subject>Animalia</subject><subject>asymmetry</subject><subject>ATP9A</subject><subject>Calcium-Transporting ATPases - genetics</subject><subject>Calcium-Transporting ATPases - metabolism</subject><subject>cell growth</subject><subject>Cell Membrane - metabolism</subject><subject>cytokinesis</subject><subject>Gain of Function Mutation</subject><subject>host-pathogen relationships</subject><subject>Membrane asymmetry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mutagenesis</subject><subject>Neo1</subject><subject>P4-ATPase</subject><subject>Phosphatidylethanolamine</subject><subject>phosphatidylethanolamines</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Phosphatidylserine</subject><subject>phosphatidylserines</subject><subject>Phosphatidylserines - metabolism</subject><subject>Phospholipid Transfer Proteins - genetics</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Point Mutation</subject><subject>proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>signal transduction</subject><subject>Substrate Specificity - genetics</subject><subject>yeasts</subject><issn>1388-1981</issn><issn>1879-2618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhiMEoqXwDxDykUuWjB079gWpWpUPqYJK7N2yJ5OuV0m82NmV9t_jakuBCwfLI80773w8VfUWmhU0oD7sVt67MexXvAGzAqmlhmfVJejO1FyBfl5ioXUNRsNF9SrnXdOAFEK-rC4EdFpx3VxW0zrOmdKRejYRbt0c8sTiwPbbmMsr_qFn-eDzktxCLBHG-zksIc7Mn9iyJXbX1tebO5eJfaMIbEhxYj8cFq8SnZAyQ0p0DDk4el29GNyY6c3jf1VtPt1s1l_q2--fv66vb2uUii-17nAAqRQnYZTzaLgemkEaHHzvCL000INqW29agSg6QdLpnmOHfEAlxFX18Wy7P_iJeqS5TD_afQqTSycbXbD_ZuawtffxaJWRXcfbYvD-0SDFnwfKi51CRhpHN1M8ZFskoNsOoCvS9izFFHNONDy1gcY-gLI7ewZlH0DZM6hS9u7vEZ-KfpP5swOVOx0DJZsx0IzUhwJhsX0M_-_wCxx7qWY</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Huang, Yannan</creator><creator>Takar, Mehmet</creator><creator>Best, Jordan T.</creator><creator>Graham, Todd R.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20200201</creationdate><title>Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae</title><author>Huang, Yannan ; Takar, Mehmet ; Best, Jordan T. ; Graham, Todd R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-87cf15662e396abc928f0f59cfbdaecb591d1644b943cc373e5a8d2c7c2fc633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>adenosinetriphosphatase</topic><topic>Animalia</topic><topic>asymmetry</topic><topic>ATP9A</topic><topic>Calcium-Transporting ATPases - genetics</topic><topic>Calcium-Transporting ATPases - metabolism</topic><topic>cell growth</topic><topic>Cell Membrane - metabolism</topic><topic>cytokinesis</topic><topic>Gain of Function Mutation</topic><topic>host-pathogen relationships</topic><topic>Membrane asymmetry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mutagenesis</topic><topic>Neo1</topic><topic>P4-ATPase</topic><topic>Phosphatidylethanolamine</topic><topic>phosphatidylethanolamines</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Phosphatidylserine</topic><topic>phosphatidylserines</topic><topic>Phosphatidylserines - metabolism</topic><topic>Phospholipid Transfer Proteins - genetics</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Point Mutation</topic><topic>proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>signal transduction</topic><topic>Substrate Specificity - genetics</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yannan</creatorcontrib><creatorcontrib>Takar, Mehmet</creatorcontrib><creatorcontrib>Best, Jordan T.</creatorcontrib><creatorcontrib>Graham, Todd R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta. Molecular and cell biology of lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yannan</au><au>Takar, Mehmet</au><au>Best, Jordan T.</au><au>Graham, Todd R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae</atitle><jtitle>Biochimica et biophysica acta. Molecular and cell biology of lipids</jtitle><addtitle>Biochim Biophys Acta Mol Cell Biol Lipids</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>1865</volume><issue>2</issue><spage>158581</spage><epage>158581</epage><pages>158581-158581</pages><artnum>158581</artnum><issn>1388-1981</issn><eissn>1879-2618</eissn><abstract>The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional asymmetry between the two leaflets important for signal transduction, cytokinesis, vesicular transport, and host-pathogen interactions. Most P4-ATPases function as a heterodimer with a β-subunit from the Cdc50 protein family, but Neo1 from Saccharomyces cerevisiae and its metazoan orthologs lack a β-subunit requirement and it is unclear how these proteins transport substrate. Here we tested if residues linked to lipid substrate recognition in other P4-ATPases also contribute to Neo1 function in budding yeast. Point mutations altering entry gate residues in the first (Q209A) and fourth (S457Q) transmembrane segments of Neo1, where phospholipid substrate would initially be selected, disrupt PS and PE membrane asymmetry, but do not perturb growth of cells. Mutation of both entry gate residues inactivates Neo1, and cells expressing this variant are inviable. We also identified a gain-of-function mutation in the second transmembrane segment of Neo1 (Neo1[Y222S]), predicted to help form the entry gate, that substantially enhances Neo1's ability to replace the function of a well characterized phospholipid flippase, Drs2, in establishing PS and PE asymmetry. These results suggest a common mechanism for substrate recognition in widely divergent P4-ATPases.
•The P4-ATPase Neo1 transports phospholipid to control membrane asymmetry.•Positionally conserved residues in Neo1 are critical for substrate recognition.•A new entry gate residue (Y222) identified in Neo1 second transmembrane segment.•Neo1 mutations enhancing phosphatidylserine recognition suppress drs2∆.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31786280</pmid><doi>10.1016/j.bbalip.2019.158581</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-1981 |
ispartof | Biochimica et biophysica acta. Molecular and cell biology of lipids, 2020-02, Vol.1865 (2), p.158581-158581, Article 158581 |
issn | 1388-1981 1879-2618 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6957724 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism adenosinetriphosphatase Animalia asymmetry ATP9A Calcium-Transporting ATPases - genetics Calcium-Transporting ATPases - metabolism cell growth Cell Membrane - metabolism cytokinesis Gain of Function Mutation host-pathogen relationships Membrane asymmetry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Mutagenesis Neo1 P4-ATPase Phosphatidylethanolamine phosphatidylethanolamines Phosphatidylethanolamines - metabolism Phosphatidylserine phosphatidylserines Phosphatidylserines - metabolism Phospholipid Transfer Proteins - genetics Phospholipid Transfer Proteins - metabolism Point Mutation proteins Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism signal transduction Substrate Specificity - genetics yeasts |
title | Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20mechanism%20of%20phospholipid%20substrate%20recognition%20by%20the%20P4-ATPase%20Neo1%20from%20Saccharomyces%20cerevisiae&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Molecular%20and%20cell%20biology%20of%20lipids&rft.au=Huang,%20Yannan&rft.date=2020-02-01&rft.volume=1865&rft.issue=2&rft.spage=158581&rft.epage=158581&rft.pages=158581-158581&rft.artnum=158581&rft.issn=1388-1981&rft.eissn=1879-2618&rft_id=info:doi/10.1016/j.bbalip.2019.158581&rft_dat=%3Cproquest_pubme%3E2431847117%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431847117&rft_id=info:pmid/31786280&rft_els_id=S138819811930232X&rfr_iscdi=true |