Analytical thermal model for end-pumped solid-state lasers
Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens p...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2017, Vol.123 (12), p.273-14, Article 273 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 12 |
container_start_page | 273 |
container_title | Applied physics. B, Lasers and optics |
container_volume | 123 |
creator | Cini, L. Mackenzie, J. I. |
description | Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints. |
doi_str_mv | 10.1007/s00340-017-6848-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6956956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959996898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-e0586973ebfc1d36c003b3cbc5bddb2a09d60e8bcdd8af4cbdd45e9d743851123</originalsourceid><addsrcrecordid>eNp1kd9LHDEQx4NU9Hr6B_hSFvriSzTZZPOjDwURWwXBF30O2WT2biW7uSa7hfvvm-OsXAuGwMDMd74zyQehC0quKCHyOhPCOMGESiwUV3h7hBaUsxoTwfUntCCaC1xTSU_R55xfSTlCqRN0yqjWUjX1An27GW3YTr2zoZrWkIYSh-ghVF1MFYweb-ZhA77KMfQe58lOUAWbIeUzdNzZkOH8LS7Ry4-759t7_Pj08-H25hE7LsmEgTRKaMmg7Rz1TLiydMtc65rW-7a2RHtBQLXOe2U77kqWN6C95Ew1lNZsib7vfTdzO4B3ME7JBrNJ_WDT1kTbm38rY782q_jbCN3sbjG4fDNI8dcMeTJDnx2EYEeIczY140pqyeVu1tf_pK9xTuWLsqG60VoLpVVR0b3KpZhzgu59GUrMjozZkzGFjNmRMdvS8-XwFe8df1EUQb0X5FIaV5AORn_o-gcPFJrr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959996898</pqid></control><display><type>article</type><title>Analytical thermal model for end-pumped solid-state lasers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cini, L. ; Mackenzie, J. I.</creator><creatorcontrib>Cini, L. ; Mackenzie, J. I.</creatorcontrib><description>Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-017-6848-y</identifier><identifier>PMID: 31997852</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Cryogenic temperature ; Cryopumping ; Electric power distribution ; Engineering ; Exact solutions ; Heat distribution ; Lasers ; Mathematical analysis ; Mathematical models ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Pumping ; Quantum Optics ; Resistance ; Solid state lasers ; Temperature ; Temperature distribution ; Temperature effects ; Temperature gradients ; Thermal analysis ; Thermal conductivity</subject><ispartof>Applied physics. B, Lasers and optics, 2017, Vol.123 (12), p.273-14, Article 273</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017.</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-e0586973ebfc1d36c003b3cbc5bddb2a09d60e8bcdd8af4cbdd45e9d743851123</citedby><cites>FETCH-LOGICAL-c470t-e0586973ebfc1d36c003b3cbc5bddb2a09d60e8bcdd8af4cbdd45e9d743851123</cites><orcidid>0000-0001-8433-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-017-6848-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-017-6848-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31997852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cini, L.</creatorcontrib><creatorcontrib>Mackenzie, J. I.</creatorcontrib><title>Analytical thermal model for end-pumped solid-state lasers</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><addtitle>Appl Phys B</addtitle><description>Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.</description><subject>Applied physics</subject><subject>Cryogenic temperature</subject><subject>Cryopumping</subject><subject>Electric power distribution</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Heat distribution</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pumping</subject><subject>Quantum Optics</subject><subject>Resistance</subject><subject>Solid state lasers</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kd9LHDEQx4NU9Hr6B_hSFvriSzTZZPOjDwURWwXBF30O2WT2biW7uSa7hfvvm-OsXAuGwMDMd74zyQehC0quKCHyOhPCOMGESiwUV3h7hBaUsxoTwfUntCCaC1xTSU_R55xfSTlCqRN0yqjWUjX1An27GW3YTr2zoZrWkIYSh-ghVF1MFYweb-ZhA77KMfQe58lOUAWbIeUzdNzZkOH8LS7Ry4-759t7_Pj08-H25hE7LsmEgTRKaMmg7Rz1TLiydMtc65rW-7a2RHtBQLXOe2U77kqWN6C95Ew1lNZsib7vfTdzO4B3ME7JBrNJ_WDT1kTbm38rY782q_jbCN3sbjG4fDNI8dcMeTJDnx2EYEeIczY140pqyeVu1tf_pK9xTuWLsqG60VoLpVVR0b3KpZhzgu59GUrMjozZkzGFjNmRMdvS8-XwFe8df1EUQb0X5FIaV5AORn_o-gcPFJrr</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Cini, L.</creator><creator>Mackenzie, J. I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8433-4400</orcidid></search><sort><creationdate>2017</creationdate><title>Analytical thermal model for end-pumped solid-state lasers</title><author>Cini, L. ; Mackenzie, J. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-e0586973ebfc1d36c003b3cbc5bddb2a09d60e8bcdd8af4cbdd45e9d743851123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Cryogenic temperature</topic><topic>Cryopumping</topic><topic>Electric power distribution</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Heat distribution</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pumping</topic><topic>Quantum Optics</topic><topic>Resistance</topic><topic>Solid state lasers</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cini, L.</creatorcontrib><creatorcontrib>Mackenzie, J. I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cini, L.</au><au>Mackenzie, J. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical thermal model for end-pumped solid-state lasers</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><addtitle>Appl Phys B</addtitle><date>2017</date><risdate>2017</risdate><volume>123</volume><issue>12</issue><spage>273</spage><epage>14</epage><pages>273-14</pages><artnum>273</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31997852</pmid><doi>10.1007/s00340-017-6848-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8433-4400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2171 |
ispartof | Applied physics. B, Lasers and optics, 2017, Vol.123 (12), p.273-14, Article 273 |
issn | 0946-2171 1432-0649 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6956956 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied physics Cryogenic temperature Cryopumping Electric power distribution Engineering Exact solutions Heat distribution Lasers Mathematical analysis Mathematical models Optical Devices Optics Photonics Physical Chemistry Physics Physics and Astronomy Pumping Quantum Optics Resistance Solid state lasers Temperature Temperature distribution Temperature effects Temperature gradients Thermal analysis Thermal conductivity |
title | Analytical thermal model for end-pumped solid-state lasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20thermal%20model%20for%20end-pumped%20solid-state%20lasers&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Cini,%20L.&rft.date=2017&rft.volume=123&rft.issue=12&rft.spage=273&rft.epage=14&rft.pages=273-14&rft.artnum=273&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-017-6848-y&rft_dat=%3Cproquest_pubme%3E1959996898%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1959996898&rft_id=info:pmid/31997852&rfr_iscdi=true |