Analytical thermal model for end-pumped solid-state lasers

Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2017, Vol.123 (12), p.273-14, Article 273
Hauptverfasser: Cini, L., Mackenzie, J. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 12
container_start_page 273
container_title Applied physics. B, Lasers and optics
container_volume 123
creator Cini, L.
Mackenzie, J. I.
description Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.
doi_str_mv 10.1007/s00340-017-6848-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6956956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959996898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-e0586973ebfc1d36c003b3cbc5bddb2a09d60e8bcdd8af4cbdd45e9d743851123</originalsourceid><addsrcrecordid>eNp1kd9LHDEQx4NU9Hr6B_hSFvriSzTZZPOjDwURWwXBF30O2WT2biW7uSa7hfvvm-OsXAuGwMDMd74zyQehC0quKCHyOhPCOMGESiwUV3h7hBaUsxoTwfUntCCaC1xTSU_R55xfSTlCqRN0yqjWUjX1An27GW3YTr2zoZrWkIYSh-ghVF1MFYweb-ZhA77KMfQe58lOUAWbIeUzdNzZkOH8LS7Ry4-759t7_Pj08-H25hE7LsmEgTRKaMmg7Rz1TLiydMtc65rW-7a2RHtBQLXOe2U77kqWN6C95Ew1lNZsib7vfTdzO4B3ME7JBrNJ_WDT1kTbm38rY782q_jbCN3sbjG4fDNI8dcMeTJDnx2EYEeIczY140pqyeVu1tf_pK9xTuWLsqG60VoLpVVR0b3KpZhzgu59GUrMjozZkzGFjNmRMdvS8-XwFe8df1EUQb0X5FIaV5AORn_o-gcPFJrr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959996898</pqid></control><display><type>article</type><title>Analytical thermal model for end-pumped solid-state lasers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cini, L. ; Mackenzie, J. I.</creator><creatorcontrib>Cini, L. ; Mackenzie, J. I.</creatorcontrib><description>Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-017-6848-y</identifier><identifier>PMID: 31997852</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Cryogenic temperature ; Cryopumping ; Electric power distribution ; Engineering ; Exact solutions ; Heat distribution ; Lasers ; Mathematical analysis ; Mathematical models ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Pumping ; Quantum Optics ; Resistance ; Solid state lasers ; Temperature ; Temperature distribution ; Temperature effects ; Temperature gradients ; Thermal analysis ; Thermal conductivity</subject><ispartof>Applied physics. B, Lasers and optics, 2017, Vol.123 (12), p.273-14, Article 273</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017.</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-e0586973ebfc1d36c003b3cbc5bddb2a09d60e8bcdd8af4cbdd45e9d743851123</citedby><cites>FETCH-LOGICAL-c470t-e0586973ebfc1d36c003b3cbc5bddb2a09d60e8bcdd8af4cbdd45e9d743851123</cites><orcidid>0000-0001-8433-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-017-6848-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-017-6848-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31997852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cini, L.</creatorcontrib><creatorcontrib>Mackenzie, J. I.</creatorcontrib><title>Analytical thermal model for end-pumped solid-state lasers</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><addtitle>Appl Phys B</addtitle><description>Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.</description><subject>Applied physics</subject><subject>Cryogenic temperature</subject><subject>Cryopumping</subject><subject>Electric power distribution</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Heat distribution</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pumping</subject><subject>Quantum Optics</subject><subject>Resistance</subject><subject>Solid state lasers</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kd9LHDEQx4NU9Hr6B_hSFvriSzTZZPOjDwURWwXBF30O2WT2biW7uSa7hfvvm-OsXAuGwMDMd74zyQehC0quKCHyOhPCOMGESiwUV3h7hBaUsxoTwfUntCCaC1xTSU_R55xfSTlCqRN0yqjWUjX1An27GW3YTr2zoZrWkIYSh-ghVF1MFYweb-ZhA77KMfQe58lOUAWbIeUzdNzZkOH8LS7Ry4-759t7_Pj08-H25hE7LsmEgTRKaMmg7Rz1TLiydMtc65rW-7a2RHtBQLXOe2U77kqWN6C95Ew1lNZsib7vfTdzO4B3ME7JBrNJ_WDT1kTbm38rY782q_jbCN3sbjG4fDNI8dcMeTJDnx2EYEeIczY140pqyeVu1tf_pK9xTuWLsqG60VoLpVVR0b3KpZhzgu59GUrMjozZkzGFjNmRMdvS8-XwFe8df1EUQb0X5FIaV5AORn_o-gcPFJrr</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Cini, L.</creator><creator>Mackenzie, J. I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8433-4400</orcidid></search><sort><creationdate>2017</creationdate><title>Analytical thermal model for end-pumped solid-state lasers</title><author>Cini, L. ; Mackenzie, J. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-e0586973ebfc1d36c003b3cbc5bddb2a09d60e8bcdd8af4cbdd45e9d743851123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Cryogenic temperature</topic><topic>Cryopumping</topic><topic>Electric power distribution</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Heat distribution</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pumping</topic><topic>Quantum Optics</topic><topic>Resistance</topic><topic>Solid state lasers</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cini, L.</creatorcontrib><creatorcontrib>Mackenzie, J. I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cini, L.</au><au>Mackenzie, J. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical thermal model for end-pumped solid-state lasers</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><addtitle>Appl Phys B</addtitle><date>2017</date><risdate>2017</risdate><volume>123</volume><issue>12</issue><spage>273</spage><epage>14</epage><pages>273-14</pages><artnum>273</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>Fundamentally power-limited by thermal effects, the design challenge for end-pumped “bulk” solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31997852</pmid><doi>10.1007/s00340-017-6848-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8433-4400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2017, Vol.123 (12), p.273-14, Article 273
issn 0946-2171
1432-0649
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6956956
source SpringerLink Journals - AutoHoldings
subjects Applied physics
Cryogenic temperature
Cryopumping
Electric power distribution
Engineering
Exact solutions
Heat distribution
Lasers
Mathematical analysis
Mathematical models
Optical Devices
Optics
Photonics
Physical Chemistry
Physics
Physics and Astronomy
Pumping
Quantum Optics
Resistance
Solid state lasers
Temperature
Temperature distribution
Temperature effects
Temperature gradients
Thermal analysis
Thermal conductivity
title Analytical thermal model for end-pumped solid-state lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20thermal%20model%20for%20end-pumped%20solid-state%20lasers&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Cini,%20L.&rft.date=2017&rft.volume=123&rft.issue=12&rft.spage=273&rft.epage=14&rft.pages=273-14&rft.artnum=273&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-017-6848-y&rft_dat=%3Cproquest_pubme%3E1959996898%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1959996898&rft_id=info:pmid/31997852&rfr_iscdi=true