iScore: a novel graph kernel-based function for scoring protein–protein docking models

Abstract Motivation Protein complexes play critical roles in many aspects of biological functions. Three-dimensional (3D) structures of protein complexes are critical for gaining insights into structural bases of interactions and their roles in the biomolecular pathways that orchestrate key cellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-01, Vol.36 (1), p.112-121
Hauptverfasser: Geng, Cunliang, Jung, Yong, Renaud, Nicolas, Honavar, Vasant, Bonvin, Alexandre M J J, Xue, Li C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 1
container_start_page 112
container_title Bioinformatics
container_volume 36
creator Geng, Cunliang
Jung, Yong
Renaud, Nicolas
Honavar, Vasant
Bonvin, Alexandre M J J
Xue, Li C
description Abstract Motivation Protein complexes play critical roles in many aspects of biological functions. Three-dimensional (3D) structures of protein complexes are critical for gaining insights into structural bases of interactions and their roles in the biomolecular pathways that orchestrate key cellular processes. Because of the expense and effort associated with experimental determinations of 3D protein complex structures, computational docking has evolved as a valuable tool to predict 3D structures of biomolecular complexes. Despite recent progress, reliably distinguishing near-native docking conformations from a large number of candidate conformations, the so-called scoring problem, remains a major challenge. Results Here we present iScore, a novel approach to scoring docked conformations that combines HADDOCK energy terms with a score obtained using a graph representation of the protein–protein interfaces and a measure of evolutionary conservation. It achieves a scoring performance competitive with, or superior to, that of state-of-the-art scoring functions on two independent datasets: (i) Docking software-specific models and (ii) the CAPRI score set generated by a wide variety of docking approaches (i.e. docking software-non-specific). iScore ranks among the top scoring approaches on the CAPRI score set (13 targets) when compared with the 37 scoring groups in CAPRI. The results demonstrate the utility of combining evolutionary, topological and energetic information for scoring docked conformations. This work represents the first successful demonstration of graph kernels to protein interfaces for effective discrimination of near-native and non-native conformations of protein complexes. Availability and implementation The iScore code is freely available from Github: https://github.com/DeepRank/iScore (DOI: 10.5281/zenodo.2630567). And the docking models used are available from SBGrid: https://data.sbgrid.org/dataset/684). Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz496
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6956772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz496</oup_id><sourcerecordid>2338062415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-137bffd28299f4554a9a02d4997e8e6aba9ba34408dba9ae48779cac02e838e03</originalsourceid><addsrcrecordid>eNqNkcFO3DAURS3UCijwCVRedpOOHduJ3QVShaBFQuqiRWJnOc7LjCGxg52MBCv-oX_YL6nRDKOy6-pd6Z1335UuQqeUfKZEsUXjgvNdiIOZnE2LZnriqtpDh5RXpCiJUO-yZlVdcEnYAfqQ0h0hgnLO99EBo1QpLsQhunU_bYjwBRvswxp6vIxmXOF7iB76ojEJWtzN3k4ueJzf4ZRx55d4jGEC5_88_94q3AZ7_7IZQgt9OkbvO9MnONnOI3RzefHr_Htx_ePb1fnX68IKKqeCsrrpuraUpVJdTsSNMqRsuVI1SKhMY1RjGOdEtlka4LKulTWWlCCZBMKO0NnGd5ybAVoLfoqm12N0g4mPOhin3268W-llWOtKiaquy2zwaWsQw8MMadKDSxb63ngIc9IlY5JUJacio2KD2hhSitDt3lCiX1rRb1vRm1by3cd_M-6uXmvIANkAYR7_0_Mv59ujow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338062415</pqid></control><display><type>article</type><title>iScore: a novel graph kernel-based function for scoring protein–protein docking models</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Geng, Cunliang ; Jung, Yong ; Renaud, Nicolas ; Honavar, Vasant ; Bonvin, Alexandre M J J ; Xue, Li C</creator><contributor>Valencia, Alfonso</contributor><creatorcontrib>Geng, Cunliang ; Jung, Yong ; Renaud, Nicolas ; Honavar, Vasant ; Bonvin, Alexandre M J J ; Xue, Li C ; Valencia, Alfonso</creatorcontrib><description>Abstract Motivation Protein complexes play critical roles in many aspects of biological functions. Three-dimensional (3D) structures of protein complexes are critical for gaining insights into structural bases of interactions and their roles in the biomolecular pathways that orchestrate key cellular processes. Because of the expense and effort associated with experimental determinations of 3D protein complex structures, computational docking has evolved as a valuable tool to predict 3D structures of biomolecular complexes. Despite recent progress, reliably distinguishing near-native docking conformations from a large number of candidate conformations, the so-called scoring problem, remains a major challenge. Results Here we present iScore, a novel approach to scoring docked conformations that combines HADDOCK energy terms with a score obtained using a graph representation of the protein–protein interfaces and a measure of evolutionary conservation. It achieves a scoring performance competitive with, or superior to, that of state-of-the-art scoring functions on two independent datasets: (i) Docking software-specific models and (ii) the CAPRI score set generated by a wide variety of docking approaches (i.e. docking software-non-specific). iScore ranks among the top scoring approaches on the CAPRI score set (13 targets) when compared with the 37 scoring groups in CAPRI. The results demonstrate the utility of combining evolutionary, topological and energetic information for scoring docked conformations. This work represents the first successful demonstration of graph kernels to protein interfaces for effective discrimination of near-native and non-native conformations of protein complexes. Availability and implementation The iScore code is freely available from Github: https://github.com/DeepRank/iScore (DOI: 10.5281/zenodo.2630567). And the docking models used are available from SBGrid: https://data.sbgrid.org/dataset/684). Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz496</identifier><identifier>PMID: 31199455</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Computational Biology - methods ; Molecular Docking Simulation - methods ; Original Papers ; Protein Binding ; Protein Conformation ; Proteins - chemistry ; Proteins - metabolism ; Software</subject><ispartof>Bioinformatics, 2020-01, Vol.36 (1), p.112-121</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-137bffd28299f4554a9a02d4997e8e6aba9ba34408dba9ae48779cac02e838e03</citedby><cites>FETCH-LOGICAL-c518t-137bffd28299f4554a9a02d4997e8e6aba9ba34408dba9ae48779cac02e838e03</cites><orcidid>0000-0002-2613-538X ; 0000-0001-7369-1322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956772/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956772/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31199455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Valencia, Alfonso</contributor><creatorcontrib>Geng, Cunliang</creatorcontrib><creatorcontrib>Jung, Yong</creatorcontrib><creatorcontrib>Renaud, Nicolas</creatorcontrib><creatorcontrib>Honavar, Vasant</creatorcontrib><creatorcontrib>Bonvin, Alexandre M J J</creatorcontrib><creatorcontrib>Xue, Li C</creatorcontrib><title>iScore: a novel graph kernel-based function for scoring protein–protein docking models</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Protein complexes play critical roles in many aspects of biological functions. Three-dimensional (3D) structures of protein complexes are critical for gaining insights into structural bases of interactions and their roles in the biomolecular pathways that orchestrate key cellular processes. Because of the expense and effort associated with experimental determinations of 3D protein complex structures, computational docking has evolved as a valuable tool to predict 3D structures of biomolecular complexes. Despite recent progress, reliably distinguishing near-native docking conformations from a large number of candidate conformations, the so-called scoring problem, remains a major challenge. Results Here we present iScore, a novel approach to scoring docked conformations that combines HADDOCK energy terms with a score obtained using a graph representation of the protein–protein interfaces and a measure of evolutionary conservation. It achieves a scoring performance competitive with, or superior to, that of state-of-the-art scoring functions on two independent datasets: (i) Docking software-specific models and (ii) the CAPRI score set generated by a wide variety of docking approaches (i.e. docking software-non-specific). iScore ranks among the top scoring approaches on the CAPRI score set (13 targets) when compared with the 37 scoring groups in CAPRI. The results demonstrate the utility of combining evolutionary, topological and energetic information for scoring docked conformations. This work represents the first successful demonstration of graph kernels to protein interfaces for effective discrimination of near-native and non-native conformations of protein complexes. Availability and implementation The iScore code is freely available from Github: https://github.com/DeepRank/iScore (DOI: 10.5281/zenodo.2630567). And the docking models used are available from SBGrid: https://data.sbgrid.org/dataset/684). Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Molecular Docking Simulation - methods</subject><subject>Original Papers</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAURS3UCijwCVRedpOOHduJ3QVShaBFQuqiRWJnOc7LjCGxg52MBCv-oX_YL6nRDKOy6-pd6Z1335UuQqeUfKZEsUXjgvNdiIOZnE2LZnriqtpDh5RXpCiJUO-yZlVdcEnYAfqQ0h0hgnLO99EBo1QpLsQhunU_bYjwBRvswxp6vIxmXOF7iB76ojEJWtzN3k4ueJzf4ZRx55d4jGEC5_88_94q3AZ7_7IZQgt9OkbvO9MnONnOI3RzefHr_Htx_ePb1fnX68IKKqeCsrrpuraUpVJdTsSNMqRsuVI1SKhMY1RjGOdEtlka4LKulTWWlCCZBMKO0NnGd5ybAVoLfoqm12N0g4mPOhin3268W-llWOtKiaquy2zwaWsQw8MMadKDSxb63ngIc9IlY5JUJacio2KD2hhSitDt3lCiX1rRb1vRm1by3cd_M-6uXmvIANkAYR7_0_Mv59ujow</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Geng, Cunliang</creator><creator>Jung, Yong</creator><creator>Renaud, Nicolas</creator><creator>Honavar, Vasant</creator><creator>Bonvin, Alexandre M J J</creator><creator>Xue, Li C</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2613-538X</orcidid><orcidid>https://orcid.org/0000-0001-7369-1322</orcidid></search><sort><creationdate>20200101</creationdate><title>iScore: a novel graph kernel-based function for scoring protein–protein docking models</title><author>Geng, Cunliang ; Jung, Yong ; Renaud, Nicolas ; Honavar, Vasant ; Bonvin, Alexandre M J J ; Xue, Li C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-137bffd28299f4554a9a02d4997e8e6aba9ba34408dba9ae48779cac02e838e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Molecular Docking Simulation - methods</topic><topic>Original Papers</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Cunliang</creatorcontrib><creatorcontrib>Jung, Yong</creatorcontrib><creatorcontrib>Renaud, Nicolas</creatorcontrib><creatorcontrib>Honavar, Vasant</creatorcontrib><creatorcontrib>Bonvin, Alexandre M J J</creatorcontrib><creatorcontrib>Xue, Li C</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Cunliang</au><au>Jung, Yong</au><au>Renaud, Nicolas</au><au>Honavar, Vasant</au><au>Bonvin, Alexandre M J J</au><au>Xue, Li C</au><au>Valencia, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iScore: a novel graph kernel-based function for scoring protein–protein docking models</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>36</volume><issue>1</issue><spage>112</spage><epage>121</epage><pages>112-121</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Protein complexes play critical roles in many aspects of biological functions. Three-dimensional (3D) structures of protein complexes are critical for gaining insights into structural bases of interactions and their roles in the biomolecular pathways that orchestrate key cellular processes. Because of the expense and effort associated with experimental determinations of 3D protein complex structures, computational docking has evolved as a valuable tool to predict 3D structures of biomolecular complexes. Despite recent progress, reliably distinguishing near-native docking conformations from a large number of candidate conformations, the so-called scoring problem, remains a major challenge. Results Here we present iScore, a novel approach to scoring docked conformations that combines HADDOCK energy terms with a score obtained using a graph representation of the protein–protein interfaces and a measure of evolutionary conservation. It achieves a scoring performance competitive with, or superior to, that of state-of-the-art scoring functions on two independent datasets: (i) Docking software-specific models and (ii) the CAPRI score set generated by a wide variety of docking approaches (i.e. docking software-non-specific). iScore ranks among the top scoring approaches on the CAPRI score set (13 targets) when compared with the 37 scoring groups in CAPRI. The results demonstrate the utility of combining evolutionary, topological and energetic information for scoring docked conformations. This work represents the first successful demonstration of graph kernels to protein interfaces for effective discrimination of near-native and non-native conformations of protein complexes. Availability and implementation The iScore code is freely available from Github: https://github.com/DeepRank/iScore (DOI: 10.5281/zenodo.2630567). And the docking models used are available from SBGrid: https://data.sbgrid.org/dataset/684). Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31199455</pmid><doi>10.1093/bioinformatics/btz496</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2613-538X</orcidid><orcidid>https://orcid.org/0000-0001-7369-1322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-01, Vol.36 (1), p.112-121
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6956772
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Computational Biology - methods
Molecular Docking Simulation - methods
Original Papers
Protein Binding
Protein Conformation
Proteins - chemistry
Proteins - metabolism
Software
title iScore: a novel graph kernel-based function for scoring protein–protein docking models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iScore:%20a%20novel%20graph%20kernel-based%20function%20for%20scoring%20protein%E2%80%93protein%20docking%20models&rft.jtitle=Bioinformatics&rft.au=Geng,%20Cunliang&rft.date=2020-01-01&rft.volume=36&rft.issue=1&rft.spage=112&rft.epage=121&rft.pages=112-121&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz496&rft_dat=%3Cproquest_pubme%3E2338062415%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338062415&rft_id=info:pmid/31199455&rft_oup_id=10.1093/bioinformatics/btz496&rfr_iscdi=true