Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation

Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-01, Vol.295 (2), p.435-443
Hauptverfasser: Han, Han, Schubert, Heidi L., McCullough, John, Monroe, Nicole, Purdy, Michael D., Yeager, Mark, Sundquist, Wesley I., Hill, Christopher P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 2
container_start_page 435
container_title The Journal of biological chemistry
container_volume 295
creator Han, Han
Schubert, Heidi L.
McCullough, John
Monroe, Nicole
Purdy, Michael D.
Yeager, Mark
Sundquist, Wesley I.
Hill, Christopher P.
description Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 Å resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, whereas the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.
doi_str_mv 10.1074/jbc.AC119.009890
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6956536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817483384</els_id><sourcerecordid>2318729661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-c1122f4e7604328f4f40eea740d9087147d6f926b0ff5dcc48d94383d726a3a53</originalsourceid><addsrcrecordid>eNp1kcFvFCEUxomxsdvq3ZPh6GVWGBhm8GDSbNSaNOmhmngjDDy6NDMwArOJ_720Wxs9lAOP5H3fj5f3IfSWki0lPf9wN5rtxY5SuSVEDpK8QBtKBtawjv58iTaEtLSRbTecorOc70g9XNJX6JTRXvRioBtUbkpaTVkT4OhwXnQuPuAxrsHiErHGt9Na9KwLNMmbPV5gKd4C9vMyechVsNfBNvEAqbl_4RlMrT7PD7x1zCVVM653yFM0uvgYXqMTp6cMbx7rOfrx5fP33WVzdf312-7iqjFc8tIYStvWcegF4awdHHecAOieEyvJ0FPeW-FkK0biXGeN4YOVnA3M9q3QTHfsHH06cpd1nMEaCHWMSS3Jzzr9VlF79X8n-L26jQclZCc6Jirg_SMgxV8r5KJmnw1Mkw4Q16xaRoe-lULQKiVHqUkx5wTu6RtK1H1YqoalHsJSx7Cq5d2_4z0Z_qZTBR-PAqhLOnhIKhsPwYD1CUxRNvrn6X8AxZem3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318729661</pqid></control><display><type>article</type><title>Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Han, Han ; Schubert, Heidi L. ; McCullough, John ; Monroe, Nicole ; Purdy, Michael D. ; Yeager, Mark ; Sundquist, Wesley I. ; Hill, Christopher P.</creator><creatorcontrib>Han, Han ; Schubert, Heidi L. ; McCullough, John ; Monroe, Nicole ; Purdy, Michael D. ; Yeager, Mark ; Sundquist, Wesley I. ; Hill, Christopher P.</creatorcontrib><description>Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 Å resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, whereas the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.AC119.009890</identifier><identifier>PMID: 31767681</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ATPases associated with diverse cellular activities (AAA) ; Binding Sites ; cryo-electron microscopy ; Glutamic Acid - chemistry ; Glutamic Acid - metabolism ; Humans ; microtubule severing mechanism ; Models, Molecular ; molecular machine ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; peptide interaction ; Protein Binding ; Protein Conformation ; Protein Multimerization ; protein structure ; Protein Structure and Folding ; Spastin - chemistry ; Spastin - metabolism ; structure-function ; Tubulin - chemistry ; Tubulin - metabolism</subject><ispartof>The Journal of biological chemistry, 2020-01, Vol.295 (2), p.435-443</ispartof><rights>2020 © 2020 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2020 Han et al.</rights><rights>2020 Han et al. 2020 Han et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-c1122f4e7604328f4f40eea740d9087147d6f926b0ff5dcc48d94383d726a3a53</citedby><cites>FETCH-LOGICAL-c494t-c1122f4e7604328f4f40eea740d9087147d6f926b0ff5dcc48d94383d726a3a53</cites><orcidid>0000-0001-6836-4394 ; 0000-0003-1762-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956536/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956536/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31767681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Schubert, Heidi L.</creatorcontrib><creatorcontrib>McCullough, John</creatorcontrib><creatorcontrib>Monroe, Nicole</creatorcontrib><creatorcontrib>Purdy, Michael D.</creatorcontrib><creatorcontrib>Yeager, Mark</creatorcontrib><creatorcontrib>Sundquist, Wesley I.</creatorcontrib><creatorcontrib>Hill, Christopher P.</creatorcontrib><title>Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 Å resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, whereas the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.</description><subject>ATPases associated with diverse cellular activities (AAA)</subject><subject>Binding Sites</subject><subject>cryo-electron microscopy</subject><subject>Glutamic Acid - chemistry</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>microtubule severing mechanism</subject><subject>Models, Molecular</subject><subject>molecular machine</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>peptide interaction</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>protein structure</subject><subject>Protein Structure and Folding</subject><subject>Spastin - chemistry</subject><subject>Spastin - metabolism</subject><subject>structure-function</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFvFCEUxomxsdvq3ZPh6GVWGBhm8GDSbNSaNOmhmngjDDy6NDMwArOJ_720Wxs9lAOP5H3fj5f3IfSWki0lPf9wN5rtxY5SuSVEDpK8QBtKBtawjv58iTaEtLSRbTecorOc70g9XNJX6JTRXvRioBtUbkpaTVkT4OhwXnQuPuAxrsHiErHGt9Na9KwLNMmbPV5gKd4C9vMyechVsNfBNvEAqbl_4RlMrT7PD7x1zCVVM653yFM0uvgYXqMTp6cMbx7rOfrx5fP33WVzdf312-7iqjFc8tIYStvWcegF4awdHHecAOieEyvJ0FPeW-FkK0biXGeN4YOVnA3M9q3QTHfsHH06cpd1nMEaCHWMSS3Jzzr9VlF79X8n-L26jQclZCc6Jirg_SMgxV8r5KJmnw1Mkw4Q16xaRoe-lULQKiVHqUkx5wTu6RtK1H1YqoalHsJSx7Cq5d2_4z0Z_qZTBR-PAqhLOnhIKhsPwYD1CUxRNvrn6X8AxZem3Q</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Han, Han</creator><creator>Schubert, Heidi L.</creator><creator>McCullough, John</creator><creator>Monroe, Nicole</creator><creator>Purdy, Michael D.</creator><creator>Yeager, Mark</creator><creator>Sundquist, Wesley I.</creator><creator>Hill, Christopher P.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6836-4394</orcidid><orcidid>https://orcid.org/0000-0003-1762-8390</orcidid></search><sort><creationdate>20200110</creationdate><title>Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation</title><author>Han, Han ; Schubert, Heidi L. ; McCullough, John ; Monroe, Nicole ; Purdy, Michael D. ; Yeager, Mark ; Sundquist, Wesley I. ; Hill, Christopher P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-c1122f4e7604328f4f40eea740d9087147d6f926b0ff5dcc48d94383d726a3a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ATPases associated with diverse cellular activities (AAA)</topic><topic>Binding Sites</topic><topic>cryo-electron microscopy</topic><topic>Glutamic Acid - chemistry</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>microtubule severing mechanism</topic><topic>Models, Molecular</topic><topic>molecular machine</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>peptide interaction</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>protein structure</topic><topic>Protein Structure and Folding</topic><topic>Spastin - chemistry</topic><topic>Spastin - metabolism</topic><topic>structure-function</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Schubert, Heidi L.</creatorcontrib><creatorcontrib>McCullough, John</creatorcontrib><creatorcontrib>Monroe, Nicole</creatorcontrib><creatorcontrib>Purdy, Michael D.</creatorcontrib><creatorcontrib>Yeager, Mark</creatorcontrib><creatorcontrib>Sundquist, Wesley I.</creatorcontrib><creatorcontrib>Hill, Christopher P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Han</au><au>Schubert, Heidi L.</au><au>McCullough, John</au><au>Monroe, Nicole</au><au>Purdy, Michael D.</au><au>Yeager, Mark</au><au>Sundquist, Wesley I.</au><au>Hill, Christopher P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-01-10</date><risdate>2020</risdate><volume>295</volume><issue>2</issue><spage>435</spage><epage>443</epage><pages>435-443</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 Å resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, whereas the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31767681</pmid><doi>10.1074/jbc.AC119.009890</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6836-4394</orcidid><orcidid>https://orcid.org/0000-0003-1762-8390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-01, Vol.295 (2), p.435-443
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6956536
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects ATPases associated with diverse cellular activities (AAA)
Binding Sites
cryo-electron microscopy
Glutamic Acid - chemistry
Glutamic Acid - metabolism
Humans
microtubule severing mechanism
Models, Molecular
molecular machine
Peptide Fragments - chemistry
Peptide Fragments - metabolism
peptide interaction
Protein Binding
Protein Conformation
Protein Multimerization
protein structure
Protein Structure and Folding
Spastin - chemistry
Spastin - metabolism
structure-function
Tubulin - chemistry
Tubulin - metabolism
title Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20spastin%20bound%20to%20a%20glutamate-rich%20peptide%20implies%20a%20hand-over-hand%20mechanism%20of%20substrate%20translocation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Han,%20Han&rft.date=2020-01-10&rft.volume=295&rft.issue=2&rft.spage=435&rft.epage=443&rft.pages=435-443&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.AC119.009890&rft_dat=%3Cproquest_pubme%3E2318729661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318729661&rft_id=info:pmid/31767681&rft_els_id=S0021925817483384&rfr_iscdi=true