How to Control the Distribution of Anchored, Mn12–Stearate, Single-Molecule Magnets

Controlling the distribution of the Mn12–stearate, single-molecule magnets (SMMs) anchored on a select surface is expected to be a new method for tuning its interactions, and an investigation on the magnetic properties of separated magnetic molecules is also lacking. The anchoring of the SMMs at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-12, Vol.9 (12), p.1730
Hauptverfasser: Laskowska, Magdalena, Pastukh, Oleksandr, Kuźma, Dominika, Laskowski, Łukasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1730
container_title Nanomaterials (Basel, Switzerland)
container_volume 9
creator Laskowska, Magdalena
Pastukh, Oleksandr
Kuźma, Dominika
Laskowski, Łukasz
description Controlling the distribution of the Mn12–stearate, single-molecule magnets (SMMs) anchored on a select surface is expected to be a new method for tuning its interactions, and an investigation on the magnetic properties of separated magnetic molecules is also lacking. The anchoring of the SMMs at the surface with an assumed statistic distance between each other is not an easy task; nevertheless, in this work, we show a synthesis which allows for this in detail. The immobilization of the Mn12–stearate was demonstrated with the use of FTO glasses and spherical silica as substrates. Based on differential pulse anodic stripping voltammetry (DPASV) and transmission electron microscopy (TEM) observations, we proved the efficiency of the method proposed. We observed continuous decreasing the number of bonds, and afterward, decreasing in the number of immobilized molecules with an increasing the number of spacer units used for separation of the magnetic particles.
doi_str_mv 10.3390/nano9121730
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6955952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548997978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3010-36ad49cc4836a8cc844d0d5ee55b5da0d17f0a5c4ddf063ef68daa181e8bd9373</originalsourceid><addsrcrecordid>eNpdUcFOGzEUtCqqJqKc-gOWuCDBUntt79oXJBSgVCLqgeZsOfbbZKONHWwvqLf-A3_Il9QoqKJ9lzfSG41m3iD0hZJzxhT56o0Pita0ZeQDmtakVRVXih68wxN0lNKGlFGUScE-oQmjkraU11O0uA1POAc8Cz7HMOC8BnzVpxz75Zj74HHo8KW36xDBneG5p_XL7-f7DCaaDGf4vverAap5GMCOA-C5WXnI6TP62JkhwdHbPkSLm-ufs9vq7se377PLu8oyQknFGuO4spbLgqS1knNHnAAQYimcIY62HTHCcuc60jDoGumMKd5BLp1iLTtEF3vd3bjcgrNQQphB72K_NfGXDqbX_158v9ar8KgbJYQSdRE4eROI4WGElPW2TxaGwXgIY9I1qxlvynNZoR7_R92EMfoST9eCS6Va1crCOt2zbAwpRej-mqFEvzam3zXG_gD4Ioi-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548997978</pqid></control><display><type>article</type><title>How to Control the Distribution of Anchored, Mn12–Stearate, Single-Molecule Magnets</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Laskowska, Magdalena ; Pastukh, Oleksandr ; Kuźma, Dominika ; Laskowski, Łukasz</creator><creatorcontrib>Laskowska, Magdalena ; Pastukh, Oleksandr ; Kuźma, Dominika ; Laskowski, Łukasz</creatorcontrib><description>Controlling the distribution of the Mn12–stearate, single-molecule magnets (SMMs) anchored on a select surface is expected to be a new method for tuning its interactions, and an investigation on the magnetic properties of separated magnetic molecules is also lacking. The anchoring of the SMMs at the surface with an assumed statistic distance between each other is not an easy task; nevertheless, in this work, we show a synthesis which allows for this in detail. The immobilization of the Mn12–stearate was demonstrated with the use of FTO glasses and spherical silica as substrates. Based on differential pulse anodic stripping voltammetry (DPASV) and transmission electron microscopy (TEM) observations, we proved the efficiency of the method proposed. We observed continuous decreasing the number of bonds, and afterward, decreasing in the number of immobilized molecules with an increasing the number of spacer units used for separation of the magnetic particles.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano9121730</identifier><identifier>PMID: 31817142</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anodic stripping ; Communication ; Immobilization ; Magnetic properties ; Magnets ; Silica ; Silicon dioxide ; Substrates ; Transmission electron microscopy</subject><ispartof>Nanomaterials (Basel, Switzerland), 2019-12, Vol.9 (12), p.1730</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3010-36ad49cc4836a8cc844d0d5ee55b5da0d17f0a5c4ddf063ef68daa181e8bd9373</citedby><cites>FETCH-LOGICAL-c3010-36ad49cc4836a8cc844d0d5ee55b5da0d17f0a5c4ddf063ef68daa181e8bd9373</cites><orcidid>0000-0003-2426-3916 ; 0000-0001-9106-9756 ; 0000-0003-0031-0159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955952/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955952/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Laskowska, Magdalena</creatorcontrib><creatorcontrib>Pastukh, Oleksandr</creatorcontrib><creatorcontrib>Kuźma, Dominika</creatorcontrib><creatorcontrib>Laskowski, Łukasz</creatorcontrib><title>How to Control the Distribution of Anchored, Mn12–Stearate, Single-Molecule Magnets</title><title>Nanomaterials (Basel, Switzerland)</title><description>Controlling the distribution of the Mn12–stearate, single-molecule magnets (SMMs) anchored on a select surface is expected to be a new method for tuning its interactions, and an investigation on the magnetic properties of separated magnetic molecules is also lacking. The anchoring of the SMMs at the surface with an assumed statistic distance between each other is not an easy task; nevertheless, in this work, we show a synthesis which allows for this in detail. The immobilization of the Mn12–stearate was demonstrated with the use of FTO glasses and spherical silica as substrates. Based on differential pulse anodic stripping voltammetry (DPASV) and transmission electron microscopy (TEM) observations, we proved the efficiency of the method proposed. We observed continuous decreasing the number of bonds, and afterward, decreasing in the number of immobilized molecules with an increasing the number of spacer units used for separation of the magnetic particles.</description><subject>Anodic stripping</subject><subject>Communication</subject><subject>Immobilization</subject><subject>Magnetic properties</subject><subject>Magnets</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Transmission electron microscopy</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdUcFOGzEUtCqqJqKc-gOWuCDBUntt79oXJBSgVCLqgeZsOfbbZKONHWwvqLf-A3_Il9QoqKJ9lzfSG41m3iD0hZJzxhT56o0Pita0ZeQDmtakVRVXih68wxN0lNKGlFGUScE-oQmjkraU11O0uA1POAc8Cz7HMOC8BnzVpxz75Zj74HHo8KW36xDBneG5p_XL7-f7DCaaDGf4vverAap5GMCOA-C5WXnI6TP62JkhwdHbPkSLm-ufs9vq7se377PLu8oyQknFGuO4spbLgqS1knNHnAAQYimcIY62HTHCcuc60jDoGumMKd5BLp1iLTtEF3vd3bjcgrNQQphB72K_NfGXDqbX_158v9ar8KgbJYQSdRE4eROI4WGElPW2TxaGwXgIY9I1qxlvynNZoR7_R92EMfoST9eCS6Va1crCOt2zbAwpRej-mqFEvzam3zXG_gD4Ioi-</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Laskowska, Magdalena</creator><creator>Pastukh, Oleksandr</creator><creator>Kuźma, Dominika</creator><creator>Laskowski, Łukasz</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2426-3916</orcidid><orcidid>https://orcid.org/0000-0001-9106-9756</orcidid><orcidid>https://orcid.org/0000-0003-0031-0159</orcidid></search><sort><creationdate>20191204</creationdate><title>How to Control the Distribution of Anchored, Mn12–Stearate, Single-Molecule Magnets</title><author>Laskowska, Magdalena ; Pastukh, Oleksandr ; Kuźma, Dominika ; Laskowski, Łukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3010-36ad49cc4836a8cc844d0d5ee55b5da0d17f0a5c4ddf063ef68daa181e8bd9373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodic stripping</topic><topic>Communication</topic><topic>Immobilization</topic><topic>Magnetic properties</topic><topic>Magnets</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laskowska, Magdalena</creatorcontrib><creatorcontrib>Pastukh, Oleksandr</creatorcontrib><creatorcontrib>Kuźma, Dominika</creatorcontrib><creatorcontrib>Laskowski, Łukasz</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laskowska, Magdalena</au><au>Pastukh, Oleksandr</au><au>Kuźma, Dominika</au><au>Laskowski, Łukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Control the Distribution of Anchored, Mn12–Stearate, Single-Molecule Magnets</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2019-12-04</date><risdate>2019</risdate><volume>9</volume><issue>12</issue><spage>1730</spage><pages>1730-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Controlling the distribution of the Mn12–stearate, single-molecule magnets (SMMs) anchored on a select surface is expected to be a new method for tuning its interactions, and an investigation on the magnetic properties of separated magnetic molecules is also lacking. The anchoring of the SMMs at the surface with an assumed statistic distance between each other is not an easy task; nevertheless, in this work, we show a synthesis which allows for this in detail. The immobilization of the Mn12–stearate was demonstrated with the use of FTO glasses and spherical silica as substrates. Based on differential pulse anodic stripping voltammetry (DPASV) and transmission electron microscopy (TEM) observations, we proved the efficiency of the method proposed. We observed continuous decreasing the number of bonds, and afterward, decreasing in the number of immobilized molecules with an increasing the number of spacer units used for separation of the magnetic particles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31817142</pmid><doi>10.3390/nano9121730</doi><orcidid>https://orcid.org/0000-0003-2426-3916</orcidid><orcidid>https://orcid.org/0000-0001-9106-9756</orcidid><orcidid>https://orcid.org/0000-0003-0031-0159</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2019-12, Vol.9 (12), p.1730
issn 2079-4991
2079-4991
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6955952
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Anodic stripping
Communication
Immobilization
Magnetic properties
Magnets
Silica
Silicon dioxide
Substrates
Transmission electron microscopy
title How to Control the Distribution of Anchored, Mn12–Stearate, Single-Molecule Magnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Control%20the%20Distribution%20of%20Anchored,%20Mn12%E2%80%93Stearate,%20Single-Molecule%20Magnets&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Laskowska,%20Magdalena&rft.date=2019-12-04&rft.volume=9&rft.issue=12&rft.spage=1730&rft.pages=1730-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano9121730&rft_dat=%3Cproquest_pubme%3E2548997978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548997978&rft_id=info:pmid/31817142&rfr_iscdi=true