A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery
Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcar...
Gespeichert in:
Veröffentlicht in: | Brain sciences 2019-12, Vol.9 (12), p.372 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 372 |
container_title | Brain sciences |
container_volume | 9 |
creator | Yazici, Mustafa Ulutas, Mustafa Okuyan, Mukadder |
description | Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1-30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery. |
doi_str_mv | 10.3390/brainsci9120372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6955896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328352269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ace4aa60ae59f482e90f59ef557b15815c4e90f54a96404462e4ab815a603c383</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoKuranQTcuKnNc2ayEUrxBRXBxzpk4p02MjOpSabQf298Us0mybnfPdzLQeiYknPOFRnXwbg-WqcoI7xkW2ifkbIYccHk9sZ7Dx3F-EryqQjhkuyiPU4rUVIq9lE9wVPfLQMsoI9uBTjO7h8unyb4MQ0va-x7nBaQkT4FVw_JZcE3-R-Ss6bFj74zyXc--YAfYJ7LESeP7z6F287MIawP0U5j2ghH3_cBer66fJrejGb317fTyWxkBaNpZCwIYwpiQKpGVAwUaaSCRsqyprKi0opPSRhVCCJEwTJfZz33cMsrfoAuvnyXQ93Bi4U8s2n1MrjOhLX2xum_ld4t9NyvdKGkrFSRDc6-DYJ_GyAm3blooW1ND36ImnFWcclYoTJ6-g999UPo83qaSS5pyXjBMjX-omzwMQZofoehRH9EqP9FmDtONnf45X8C4-_PjZkT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535172362</pqid></control><display><type>article</type><title>A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Yazici, Mustafa ; Ulutas, Mustafa ; Okuyan, Mukadder</creator><creatorcontrib>Yazici, Mustafa ; Ulutas, Mustafa ; Okuyan, Mukadder</creatorcontrib><description>Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1-30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci9120372</identifier><identifier>PMID: 31847114</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Brain research ; Classification ; Competition ; Datasets ; EEG ; Electrodes ; Interfaces ; Machine learning ; Mental task performance ; Open source software ; Prostheses ; Rehabilitation ; Sensors ; Signal processing ; Success</subject><ispartof>Brain sciences, 2019-12, Vol.9 (12), p.372</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ace4aa60ae59f482e90f59ef557b15815c4e90f54a96404462e4ab815a603c383</citedby><cites>FETCH-LOGICAL-c421t-ace4aa60ae59f482e90f59ef557b15815c4e90f54a96404462e4ab815a603c383</cites><orcidid>0000-0002-5490-1176 ; 0000-0003-3633-0282 ; 0000-0001-8876-9591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955896/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955896/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31847114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazici, Mustafa</creatorcontrib><creatorcontrib>Ulutas, Mustafa</creatorcontrib><creatorcontrib>Okuyan, Mukadder</creatorcontrib><title>A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1-30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Brain research</subject><subject>Classification</subject><subject>Competition</subject><subject>Datasets</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Interfaces</subject><subject>Machine learning</subject><subject>Mental task performance</subject><subject>Open source software</subject><subject>Prostheses</subject><subject>Rehabilitation</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Success</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtLAzEUhYMoKuranQTcuKnNc2ayEUrxBRXBxzpk4p02MjOpSabQf298Us0mybnfPdzLQeiYknPOFRnXwbg-WqcoI7xkW2ifkbIYccHk9sZ7Dx3F-EryqQjhkuyiPU4rUVIq9lE9wVPfLQMsoI9uBTjO7h8unyb4MQ0va-x7nBaQkT4FVw_JZcE3-R-Ss6bFj74zyXc--YAfYJ7LESeP7z6F287MIawP0U5j2ghH3_cBer66fJrejGb317fTyWxkBaNpZCwIYwpiQKpGVAwUaaSCRsqyprKi0opPSRhVCCJEwTJfZz33cMsrfoAuvnyXQ93Bi4U8s2n1MrjOhLX2xum_ld4t9NyvdKGkrFSRDc6-DYJ_GyAm3blooW1ND36ImnFWcclYoTJ6-g999UPo83qaSS5pyXjBMjX-omzwMQZofoehRH9EqP9FmDtONnf45X8C4-_PjZkT</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Yazici, Mustafa</creator><creator>Ulutas, Mustafa</creator><creator>Okuyan, Mukadder</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5490-1176</orcidid><orcidid>https://orcid.org/0000-0003-3633-0282</orcidid><orcidid>https://orcid.org/0000-0001-8876-9591</orcidid></search><sort><creationdate>20191213</creationdate><title>A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery</title><author>Yazici, Mustafa ; Ulutas, Mustafa ; Okuyan, Mukadder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ace4aa60ae59f482e90f59ef557b15815c4e90f54a96404462e4ab815a603c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Brain research</topic><topic>Classification</topic><topic>Competition</topic><topic>Datasets</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Interfaces</topic><topic>Machine learning</topic><topic>Mental task performance</topic><topic>Open source software</topic><topic>Prostheses</topic><topic>Rehabilitation</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazici, Mustafa</creatorcontrib><creatorcontrib>Ulutas, Mustafa</creatorcontrib><creatorcontrib>Okuyan, Mukadder</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazici, Mustafa</au><au>Ulutas, Mustafa</au><au>Okuyan, Mukadder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2019-12-13</date><risdate>2019</risdate><volume>9</volume><issue>12</issue><spage>372</spage><pages>372-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1-30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31847114</pmid><doi>10.3390/brainsci9120372</doi><orcidid>https://orcid.org/0000-0002-5490-1176</orcidid><orcidid>https://orcid.org/0000-0003-3633-0282</orcidid><orcidid>https://orcid.org/0000-0001-8876-9591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3425 |
ispartof | Brain sciences, 2019-12, Vol.9 (12), p.372 |
issn | 2076-3425 2076-3425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6955896 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Accuracy Algorithms Artificial intelligence Brain research Classification Competition Datasets EEG Electrodes Interfaces Machine learning Mental task performance Open source software Prostheses Rehabilitation Sensors Signal processing Success |
title | A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20sLORETA%20Study%20on%20the%20Contribution%20of%20Cortical%20Somatomotor%20Regions%20to%20Motor%20Imagery&rft.jtitle=Brain%20sciences&rft.au=Yazici,%20Mustafa&rft.date=2019-12-13&rft.volume=9&rft.issue=12&rft.spage=372&rft.pages=372-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci9120372&rft_dat=%3Cproquest_pubme%3E2328352269%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535172362&rft_id=info:pmid/31847114&rfr_iscdi=true |