A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery

Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain sciences 2019-12, Vol.9 (12), p.372
Hauptverfasser: Yazici, Mustafa, Ulutas, Mustafa, Okuyan, Mukadder
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 372
container_title Brain sciences
container_volume 9
creator Yazici, Mustafa
Ulutas, Mustafa
Okuyan, Mukadder
description Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1-30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.
doi_str_mv 10.3390/brainsci9120372
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6955896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328352269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ace4aa60ae59f482e90f59ef557b15815c4e90f54a96404462e4ab815a603c383</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoKuranQTcuKnNc2ayEUrxBRXBxzpk4p02MjOpSabQf298Us0mybnfPdzLQeiYknPOFRnXwbg-WqcoI7xkW2ifkbIYccHk9sZ7Dx3F-EryqQjhkuyiPU4rUVIq9lE9wVPfLQMsoI9uBTjO7h8unyb4MQ0va-x7nBaQkT4FVw_JZcE3-R-Ss6bFj74zyXc--YAfYJ7LESeP7z6F287MIawP0U5j2ghH3_cBer66fJrejGb317fTyWxkBaNpZCwIYwpiQKpGVAwUaaSCRsqyprKi0opPSRhVCCJEwTJfZz33cMsrfoAuvnyXQ93Bi4U8s2n1MrjOhLX2xum_ld4t9NyvdKGkrFSRDc6-DYJ_GyAm3blooW1ND36ImnFWcclYoTJ6-g999UPo83qaSS5pyXjBMjX-omzwMQZofoehRH9EqP9FmDtONnf45X8C4-_PjZkT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535172362</pqid></control><display><type>article</type><title>A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Yazici, Mustafa ; Ulutas, Mustafa ; Okuyan, Mukadder</creator><creatorcontrib>Yazici, Mustafa ; Ulutas, Mustafa ; Okuyan, Mukadder</creatorcontrib><description>Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1-30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci9120372</identifier><identifier>PMID: 31847114</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Brain research ; Classification ; Competition ; Datasets ; EEG ; Electrodes ; Interfaces ; Machine learning ; Mental task performance ; Open source software ; Prostheses ; Rehabilitation ; Sensors ; Signal processing ; Success</subject><ispartof>Brain sciences, 2019-12, Vol.9 (12), p.372</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ace4aa60ae59f482e90f59ef557b15815c4e90f54a96404462e4ab815a603c383</citedby><cites>FETCH-LOGICAL-c421t-ace4aa60ae59f482e90f59ef557b15815c4e90f54a96404462e4ab815a603c383</cites><orcidid>0000-0002-5490-1176 ; 0000-0003-3633-0282 ; 0000-0001-8876-9591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955896/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955896/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31847114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazici, Mustafa</creatorcontrib><creatorcontrib>Ulutas, Mustafa</creatorcontrib><creatorcontrib>Okuyan, Mukadder</creatorcontrib><title>A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1-30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Brain research</subject><subject>Classification</subject><subject>Competition</subject><subject>Datasets</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Interfaces</subject><subject>Machine learning</subject><subject>Mental task performance</subject><subject>Open source software</subject><subject>Prostheses</subject><subject>Rehabilitation</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Success</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtLAzEUhYMoKuranQTcuKnNc2ayEUrxBRXBxzpk4p02MjOpSabQf298Us0mybnfPdzLQeiYknPOFRnXwbg-WqcoI7xkW2ifkbIYccHk9sZ7Dx3F-EryqQjhkuyiPU4rUVIq9lE9wVPfLQMsoI9uBTjO7h8unyb4MQ0va-x7nBaQkT4FVw_JZcE3-R-Ss6bFj74zyXc--YAfYJ7LESeP7z6F287MIawP0U5j2ghH3_cBer66fJrejGb317fTyWxkBaNpZCwIYwpiQKpGVAwUaaSCRsqyprKi0opPSRhVCCJEwTJfZz33cMsrfoAuvnyXQ93Bi4U8s2n1MrjOhLX2xum_ld4t9NyvdKGkrFSRDc6-DYJ_GyAm3blooW1ND36ImnFWcclYoTJ6-g999UPo83qaSS5pyXjBMjX-omzwMQZofoehRH9EqP9FmDtONnf45X8C4-_PjZkT</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Yazici, Mustafa</creator><creator>Ulutas, Mustafa</creator><creator>Okuyan, Mukadder</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5490-1176</orcidid><orcidid>https://orcid.org/0000-0003-3633-0282</orcidid><orcidid>https://orcid.org/0000-0001-8876-9591</orcidid></search><sort><creationdate>20191213</creationdate><title>A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery</title><author>Yazici, Mustafa ; Ulutas, Mustafa ; Okuyan, Mukadder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ace4aa60ae59f482e90f59ef557b15815c4e90f54a96404462e4ab815a603c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Brain research</topic><topic>Classification</topic><topic>Competition</topic><topic>Datasets</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Interfaces</topic><topic>Machine learning</topic><topic>Mental task performance</topic><topic>Open source software</topic><topic>Prostheses</topic><topic>Rehabilitation</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazici, Mustafa</creatorcontrib><creatorcontrib>Ulutas, Mustafa</creatorcontrib><creatorcontrib>Okuyan, Mukadder</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazici, Mustafa</au><au>Ulutas, Mustafa</au><au>Okuyan, Mukadder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2019-12-13</date><risdate>2019</risdate><volume>9</volume><issue>12</issue><spage>372</spage><pages>372-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>Brain-computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1-30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31847114</pmid><doi>10.3390/brainsci9120372</doi><orcidid>https://orcid.org/0000-0002-5490-1176</orcidid><orcidid>https://orcid.org/0000-0003-3633-0282</orcidid><orcidid>https://orcid.org/0000-0001-8876-9591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3425
ispartof Brain sciences, 2019-12, Vol.9 (12), p.372
issn 2076-3425
2076-3425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6955896
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Accuracy
Algorithms
Artificial intelligence
Brain research
Classification
Competition
Datasets
EEG
Electrodes
Interfaces
Machine learning
Mental task performance
Open source software
Prostheses
Rehabilitation
Sensors
Signal processing
Success
title A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20sLORETA%20Study%20on%20the%20Contribution%20of%20Cortical%20Somatomotor%20Regions%20to%20Motor%20Imagery&rft.jtitle=Brain%20sciences&rft.au=Yazici,%20Mustafa&rft.date=2019-12-13&rft.volume=9&rft.issue=12&rft.spage=372&rft.pages=372-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci9120372&rft_dat=%3Cproquest_pubme%3E2328352269%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535172362&rft_id=info:pmid/31847114&rfr_iscdi=true