Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis
Microorganisms possess diverse mechanisms to regulate investment into individual cellular processes according to their environment. How these regulatory strategies reflect the inherent trade-off between the benefit and cost of resource investment remains largely unknown, particularly for many cellul...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-01, Vol.117 (1), p.595-601 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microorganisms possess diverse mechanisms to regulate investment into individual cellular processes according to their environment. How these regulatory strategies reflect the inherent trade-off between the benefit and cost of resource investment remains largely unknown, particularly for many cellular functions that are not immediately related to growth. Here, we investigate regulation of motility and chemotaxis, one of the most complex and costly bacterial behaviors, as a function of bacterial growth rate. We show with experiment and theory that in poor nutritional conditions, Escherichia coli increases its investment in motility in proportion to the reproductive fitness advantage provided by the ability to follow nutrient gradients. Since this growth-rate dependent regulation of motility genes occurs even when nutrient gradients are absent, we hypothesize that it reflects an anticipatory preallocation of cellular resources. Notably, relative fitness benefit of chemotaxis could be observed not only in the presence of imposed gradients of secondary nutrients but also in initially homogeneous bacterial cultures, suggesting that bacteria can generate local gradients of carbon sources and excreted metabolites, and subsequently use chemotaxis to enhance the utilization of these compounds. This interplay between metabolite excretion and their chemotaxis-dependent reutilization is likely to play an important general role in microbial communities. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1910849117 |