Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments

Many enzymes assemble into defined oligomers, providing a mechanism for cooperatively regulating activity. Recent studies have described a mode of regulation in which enzyme activity is modulated by polymerization into large-scale filaments. Here we describe an ultrasensitive form of polymerization-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2020-01, Vol.27 (1), p.42-48
Hauptverfasser: Lynch, Eric M., Kollman, Justin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 42
container_title Nature structural & molecular biology
container_volume 27
creator Lynch, Eric M.
Kollman, Justin M.
description Many enzymes assemble into defined oligomers, providing a mechanism for cooperatively regulating activity. Recent studies have described a mode of regulation in which enzyme activity is modulated by polymerization into large-scale filaments. Here we describe an ultrasensitive form of polymerization-based regulation employed by human CTP synthase 2 (CTPS2). Cryo-EM structures reveal that CTPS2 filaments dynamically switch between active and inactive forms in response to changes in substrate and product levels. Linking the conformational state of many CTPS2 subunits in a filament results in highly cooperative regulation, greatly exceeding the limits of cooperativity for the CTPS2 tetramer alone. The structures reveal a link between conformation and control of ammonia channeling between the enzyme’s active sites, and explain differences in regulation of human CTPS isoforms. This filament-based mechanism of enhanced cooperativity demonstrates how the widespread phenomenon of enzyme polymerization can be adapted to achieve different regulatory outcomes. Cryo-EM and functional analyses of human CTP synthase 2 reveal that this enzyme forms polymeric filaments that can switch between active and inactive forms, in response to substrate and product levels, resulting in highly cooperative regulation.
doi_str_mv 10.1038/s41594-019-0352-5
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6954954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611049698</galeid><sourcerecordid>A611049698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-5663e4f57f0f4f6dfb481bff6ac267aab0eceb79db784d82b5b2954532f4f5453</originalsourceid><addsrcrecordid>eNp1kltrFTEUhQdR7EV_gC8y4Ev7MDWXyczkRSgHq4WCYuubEDKZnTkpM8kxl2L_fTOceuoRJYEE9rfXZi9WUbzB6Awj2r0PNWa8rhDmFaKMVOxZcYhZzSrOO_Z89-f0oDgK4RYhwlhLXxYHFHctpYgeFj9WLm0mGMoQfVIxeTmV0UsbTDTOhhKs7Cco12ZcT_elcm4DXkZzB6WHMU1yoUqny3WapS1XN1-vSanNJGewMbwqXmg5BXj9-B4X3y8-3qw-V1dfPl2uzq8qxVocK9Y0FGrNWo10rZtB93WHe60bqUjTStkjUNC3fOjbrh460rOe8LwaJRlf3uPiw1Z3k_oZBpVn5z3ExptZ-nvhpBH7FWvWYnR3osky-WaBk0cB734mCFHMJiiYJmnBpSDIYhbNA3FG3_2F3rrkbV4vUzWhLce4e6JGOYEwVrs8Vy2i4rzBGNW84Qt19g8qnwFmo5yF7CTsN5zuNWQmwq84yhSCuLz-ts_iLau8C8GD3vmBkVjiI7bxETk-YomPWIx8-6eRu47feckA2QIhl-wI_mn7_6s-AAQmz8c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342379118</pqid></control><display><type>article</type><title>Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lynch, Eric M. ; Kollman, Justin M.</creator><creatorcontrib>Lynch, Eric M. ; Kollman, Justin M.</creatorcontrib><description>Many enzymes assemble into defined oligomers, providing a mechanism for cooperatively regulating activity. Recent studies have described a mode of regulation in which enzyme activity is modulated by polymerization into large-scale filaments. Here we describe an ultrasensitive form of polymerization-based regulation employed by human CTP synthase 2 (CTPS2). Cryo-EM structures reveal that CTPS2 filaments dynamically switch between active and inactive forms in response to changes in substrate and product levels. Linking the conformational state of many CTPS2 subunits in a filament results in highly cooperative regulation, greatly exceeding the limits of cooperativity for the CTPS2 tetramer alone. The structures reveal a link between conformation and control of ammonia channeling between the enzyme’s active sites, and explain differences in regulation of human CTPS isoforms. This filament-based mechanism of enhanced cooperativity demonstrates how the widespread phenomenon of enzyme polymerization can be adapted to achieve different regulatory outcomes. Cryo-EM and functional analyses of human CTP synthase 2 reveal that this enzyme forms polymeric filaments that can switch between active and inactive forms, in response to substrate and product levels, resulting in highly cooperative regulation.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0352-5</identifier><identifier>PMID: 31873303</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/28 ; 631/45/607 ; 631/535/1258/1259 ; Ammonia ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Carbon-Nitrogen Ligases - chemistry ; Carbon-Nitrogen Ligases - metabolism ; Carbon-Nitrogen Ligases - ultrastructure ; Catalytic Domain ; Channeling ; Conformation ; Cooperativity ; Cryoelectron Microscopy ; CTP synthase ; Enzymatic activity ; Enzyme Activation ; Enzyme activity ; Enzymes ; Filaments ; Genetic regulation ; Genetic research ; Humans ; Isoforms ; Life Sciences ; Membrane Biology ; Models, Molecular ; Oligomers ; Polymerization ; Protein Conformation ; Protein Multimerization ; Protein Structure ; Proteins ; Structure ; Substrate Specificity ; Substrates</subject><ispartof>Nature structural &amp; molecular biology, 2020-01, Vol.27 (1), p.42-48</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-5663e4f57f0f4f6dfb481bff6ac267aab0eceb79db784d82b5b2954532f4f5453</citedby><cites>FETCH-LOGICAL-c571t-5663e4f57f0f4f6dfb481bff6ac267aab0eceb79db784d82b5b2954532f4f5453</cites><orcidid>0000-0001-5897-5167 ; 0000-0002-0350-5827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0352-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0352-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Eric M.</creatorcontrib><creatorcontrib>Kollman, Justin M.</creatorcontrib><title>Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Many enzymes assemble into defined oligomers, providing a mechanism for cooperatively regulating activity. Recent studies have described a mode of regulation in which enzyme activity is modulated by polymerization into large-scale filaments. Here we describe an ultrasensitive form of polymerization-based regulation employed by human CTP synthase 2 (CTPS2). Cryo-EM structures reveal that CTPS2 filaments dynamically switch between active and inactive forms in response to changes in substrate and product levels. Linking the conformational state of many CTPS2 subunits in a filament results in highly cooperative regulation, greatly exceeding the limits of cooperativity for the CTPS2 tetramer alone. The structures reveal a link between conformation and control of ammonia channeling between the enzyme’s active sites, and explain differences in regulation of human CTPS isoforms. This filament-based mechanism of enhanced cooperativity demonstrates how the widespread phenomenon of enzyme polymerization can be adapted to achieve different regulatory outcomes. Cryo-EM and functional analyses of human CTP synthase 2 reveal that this enzyme forms polymeric filaments that can switch between active and inactive forms, in response to substrate and product levels, resulting in highly cooperative regulation.</description><subject>101/28</subject><subject>631/45/607</subject><subject>631/535/1258/1259</subject><subject>Ammonia</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon-Nitrogen Ligases - chemistry</subject><subject>Carbon-Nitrogen Ligases - metabolism</subject><subject>Carbon-Nitrogen Ligases - ultrastructure</subject><subject>Catalytic Domain</subject><subject>Channeling</subject><subject>Conformation</subject><subject>Cooperativity</subject><subject>Cryoelectron Microscopy</subject><subject>CTP synthase</subject><subject>Enzymatic activity</subject><subject>Enzyme Activation</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Filaments</subject><subject>Genetic regulation</subject><subject>Genetic research</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Oligomers</subject><subject>Polymerization</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Structure</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kltrFTEUhQdR7EV_gC8y4Ev7MDWXyczkRSgHq4WCYuubEDKZnTkpM8kxl2L_fTOceuoRJYEE9rfXZi9WUbzB6Awj2r0PNWa8rhDmFaKMVOxZcYhZzSrOO_Z89-f0oDgK4RYhwlhLXxYHFHctpYgeFj9WLm0mGMoQfVIxeTmV0UsbTDTOhhKs7Cco12ZcT_elcm4DXkZzB6WHMU1yoUqny3WapS1XN1-vSanNJGewMbwqXmg5BXj9-B4X3y8-3qw-V1dfPl2uzq8qxVocK9Y0FGrNWo10rZtB93WHe60bqUjTStkjUNC3fOjbrh460rOe8LwaJRlf3uPiw1Z3k_oZBpVn5z3ExptZ-nvhpBH7FWvWYnR3osky-WaBk0cB734mCFHMJiiYJmnBpSDIYhbNA3FG3_2F3rrkbV4vUzWhLce4e6JGOYEwVrs8Vy2i4rzBGNW84Qt19g8qnwFmo5yF7CTsN5zuNWQmwq84yhSCuLz-ts_iLau8C8GD3vmBkVjiI7bxETk-YomPWIx8-6eRu47feckA2QIhl-wI_mn7_6s-AAQmz8c</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lynch, Eric M.</creator><creator>Kollman, Justin M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5897-5167</orcidid><orcidid>https://orcid.org/0000-0002-0350-5827</orcidid></search><sort><creationdate>20200101</creationdate><title>Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments</title><author>Lynch, Eric M. ; Kollman, Justin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-5663e4f57f0f4f6dfb481bff6ac267aab0eceb79db784d82b5b2954532f4f5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/28</topic><topic>631/45/607</topic><topic>631/535/1258/1259</topic><topic>Ammonia</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon-Nitrogen Ligases - chemistry</topic><topic>Carbon-Nitrogen Ligases - metabolism</topic><topic>Carbon-Nitrogen Ligases - ultrastructure</topic><topic>Catalytic Domain</topic><topic>Channeling</topic><topic>Conformation</topic><topic>Cooperativity</topic><topic>Cryoelectron Microscopy</topic><topic>CTP synthase</topic><topic>Enzymatic activity</topic><topic>Enzyme Activation</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Filaments</topic><topic>Genetic regulation</topic><topic>Genetic research</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Oligomers</topic><topic>Polymerization</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Structure</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Eric M.</creatorcontrib><creatorcontrib>Kollman, Justin M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Eric M.</au><au>Kollman, Justin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><spage>42</spage><epage>48</epage><pages>42-48</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Many enzymes assemble into defined oligomers, providing a mechanism for cooperatively regulating activity. Recent studies have described a mode of regulation in which enzyme activity is modulated by polymerization into large-scale filaments. Here we describe an ultrasensitive form of polymerization-based regulation employed by human CTP synthase 2 (CTPS2). Cryo-EM structures reveal that CTPS2 filaments dynamically switch between active and inactive forms in response to changes in substrate and product levels. Linking the conformational state of many CTPS2 subunits in a filament results in highly cooperative regulation, greatly exceeding the limits of cooperativity for the CTPS2 tetramer alone. The structures reveal a link between conformation and control of ammonia channeling between the enzyme’s active sites, and explain differences in regulation of human CTPS isoforms. This filament-based mechanism of enhanced cooperativity demonstrates how the widespread phenomenon of enzyme polymerization can be adapted to achieve different regulatory outcomes. Cryo-EM and functional analyses of human CTP synthase 2 reveal that this enzyme forms polymeric filaments that can switch between active and inactive forms, in response to substrate and product levels, resulting in highly cooperative regulation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31873303</pmid><doi>10.1038/s41594-019-0352-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5897-5167</orcidid><orcidid>https://orcid.org/0000-0002-0350-5827</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2020-01, Vol.27 (1), p.42-48
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6954954
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 101/28
631/45/607
631/535/1258/1259
Ammonia
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Carbon-Nitrogen Ligases - chemistry
Carbon-Nitrogen Ligases - metabolism
Carbon-Nitrogen Ligases - ultrastructure
Catalytic Domain
Channeling
Conformation
Cooperativity
Cryoelectron Microscopy
CTP synthase
Enzymatic activity
Enzyme Activation
Enzyme activity
Enzymes
Filaments
Genetic regulation
Genetic research
Humans
Isoforms
Life Sciences
Membrane Biology
Models, Molecular
Oligomers
Polymerization
Protein Conformation
Protein Multimerization
Protein Structure
Proteins
Structure
Substrate Specificity
Substrates
title Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20structural%20transitions%20enable%20highly%20cooperative%20regulation%20of%20human%20CTPS2%20filaments&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Lynch,%20Eric%20M.&rft.date=2020-01-01&rft.volume=27&rft.issue=1&rft.spage=42&rft.epage=48&rft.pages=42-48&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0352-5&rft_dat=%3Cgale_pubme%3EA611049698%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342379118&rft_id=info:pmid/31873303&rft_galeid=A611049698&rfr_iscdi=true