The nPYc-Toolbox, a Python module for the pre-processing, quality-control and analysis of metabolic profiling datasets
As large-scale metabolic phenotyping studies become increasingly common, the need for systemic methods for pre-processing and quality control (QC) of analytical data prior to statistical analysis has become increasingly important, both within a study, and to allow meaningful inter-study comparisons....
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2019-12, Vol.35 (24), p.5359-5360 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5360 |
---|---|
container_issue | 24 |
container_start_page | 5359 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 35 |
creator | Sands, Caroline J Wolfer, Arnaud M Correia, Gonçalo D S Sadawi, Noureddin Ahmed, Arfan Jiménez, Beatriz Lewis, Matthew R Glen, Robert C Nicholson, Jeremy K Pearce, Jake T M |
description | As large-scale metabolic phenotyping studies become increasingly common, the need for systemic methods for pre-processing and quality control (QC) of analytical data prior to statistical analysis has become increasingly important, both within a study, and to allow meaningful inter-study comparisons. The nPYc-Toolbox provides software for the import, pre-processing, QC and visualization of metabolic phenotyping datasets, either interactively, or in automated pipelines.
The nPYc-Toolbox is implemented in Python, and is freely available from the Python package index https://pypi.org/project/nPYc/, source is available at https://github.com/phenomecentre/nPYc-Toolbox. Full documentation can be found at http://npyc-toolbox.readthedocs.io/ and exemplar datasets and tutorials at https://github.com/phenomecentre/nPYc-toolbox-tutorials. |
doi_str_mv | 10.1093/bioinformatics/btz566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6954639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265790189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-487cfb291f5bfb7ca54aca323a61e601de96e44ace330d65b0ebd85f2bd638963</originalsourceid><addsrcrecordid>eNpVUcFqGzEQFSWlSdN-QoqOOWQbabWSvZdCMUlbCDQH99CTkLSjWEW740jaEPfrq-DENIdhhpn33jx4hJxx9pmzXlzagGHymEZTgsuXtvyVSr0hJ1yoRdMtOT86zEwck_c5_2GMSSbVO3IsuKhTJ07Iw3oDdLr97Zo1YrT4eEENvd2VDU50xGGOQOsTWipqm6DZJnSQc5juLuj9bGIou8bhVBJGaqahlom7HDJFT0coxmIMrjLRh1hJdDDFZCj5A3nrTczw8bmfkl_XV-vV9-bm57cfq683jes4L9X7wnnb9txL6-3CGdkZZ0QrjOKgGB-gV9DVHQjBBiUtAzsspW_toMSyV-KUfNnrbmc7wuCgWjVRb1MYTdppNEG_vkxho-_wQatedkr0VeD8WSDh_Qy56DFkBzGaCXDOum2VXPSML5-gcg91CXNO4A9vONNPmenXmel9ZpX36X-PB9ZLSOIfbzOcrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265790189</pqid></control><display><type>article</type><title>The nPYc-Toolbox, a Python module for the pre-processing, quality-control and analysis of metabolic profiling datasets</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sands, Caroline J ; Wolfer, Arnaud M ; Correia, Gonçalo D S ; Sadawi, Noureddin ; Ahmed, Arfan ; Jiménez, Beatriz ; Lewis, Matthew R ; Glen, Robert C ; Nicholson, Jeremy K ; Pearce, Jake T M</creator><contributor>Valencia, Alfonso</contributor><creatorcontrib>Sands, Caroline J ; Wolfer, Arnaud M ; Correia, Gonçalo D S ; Sadawi, Noureddin ; Ahmed, Arfan ; Jiménez, Beatriz ; Lewis, Matthew R ; Glen, Robert C ; Nicholson, Jeremy K ; Pearce, Jake T M ; Valencia, Alfonso</creatorcontrib><description>As large-scale metabolic phenotyping studies become increasingly common, the need for systemic methods for pre-processing and quality control (QC) of analytical data prior to statistical analysis has become increasingly important, both within a study, and to allow meaningful inter-study comparisons. The nPYc-Toolbox provides software for the import, pre-processing, QC and visualization of metabolic phenotyping datasets, either interactively, or in automated pipelines.
The nPYc-Toolbox is implemented in Python, and is freely available from the Python package index https://pypi.org/project/nPYc/, source is available at https://github.com/phenomecentre/nPYc-Toolbox. Full documentation can be found at http://npyc-toolbox.readthedocs.io/ and exemplar datasets and tutorials at https://github.com/phenomecentre/nPYc-toolbox-tutorials.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz566</identifier><identifier>PMID: 31350543</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes</subject><ispartof>Bioinformatics (Oxford, England), 2019-12, Vol.35 (24), p.5359-5360</ispartof><rights>The Author(s) 2019. Published by Oxford University Press.</rights><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-487cfb291f5bfb7ca54aca323a61e601de96e44ace330d65b0ebd85f2bd638963</citedby><cites>FETCH-LOGICAL-c411t-487cfb291f5bfb7ca54aca323a61e601de96e44ace330d65b0ebd85f2bd638963</cites><orcidid>0000-0001-5856-3218 ; 0000-0002-3749-7941 ; 0000-0003-4637-3171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954639/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954639/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31350543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Valencia, Alfonso</contributor><creatorcontrib>Sands, Caroline J</creatorcontrib><creatorcontrib>Wolfer, Arnaud M</creatorcontrib><creatorcontrib>Correia, Gonçalo D S</creatorcontrib><creatorcontrib>Sadawi, Noureddin</creatorcontrib><creatorcontrib>Ahmed, Arfan</creatorcontrib><creatorcontrib>Jiménez, Beatriz</creatorcontrib><creatorcontrib>Lewis, Matthew R</creatorcontrib><creatorcontrib>Glen, Robert C</creatorcontrib><creatorcontrib>Nicholson, Jeremy K</creatorcontrib><creatorcontrib>Pearce, Jake T M</creatorcontrib><title>The nPYc-Toolbox, a Python module for the pre-processing, quality-control and analysis of metabolic profiling datasets</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>As large-scale metabolic phenotyping studies become increasingly common, the need for systemic methods for pre-processing and quality control (QC) of analytical data prior to statistical analysis has become increasingly important, both within a study, and to allow meaningful inter-study comparisons. The nPYc-Toolbox provides software for the import, pre-processing, QC and visualization of metabolic phenotyping datasets, either interactively, or in automated pipelines.
The nPYc-Toolbox is implemented in Python, and is freely available from the Python package index https://pypi.org/project/nPYc/, source is available at https://github.com/phenomecentre/nPYc-Toolbox. Full documentation can be found at http://npyc-toolbox.readthedocs.io/ and exemplar datasets and tutorials at https://github.com/phenomecentre/nPYc-toolbox-tutorials.</description><subject>Applications Notes</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUcFqGzEQFSWlSdN-QoqOOWQbabWSvZdCMUlbCDQH99CTkLSjWEW740jaEPfrq-DENIdhhpn33jx4hJxx9pmzXlzagGHymEZTgsuXtvyVSr0hJ1yoRdMtOT86zEwck_c5_2GMSSbVO3IsuKhTJ07Iw3oDdLr97Zo1YrT4eEENvd2VDU50xGGOQOsTWipqm6DZJnSQc5juLuj9bGIou8bhVBJGaqahlom7HDJFT0coxmIMrjLRh1hJdDDFZCj5A3nrTczw8bmfkl_XV-vV9-bm57cfq683jes4L9X7wnnb9txL6-3CGdkZZ0QrjOKgGB-gV9DVHQjBBiUtAzsspW_toMSyV-KUfNnrbmc7wuCgWjVRb1MYTdppNEG_vkxho-_wQatedkr0VeD8WSDh_Qy56DFkBzGaCXDOum2VXPSML5-gcg91CXNO4A9vONNPmenXmel9ZpX36X-PB9ZLSOIfbzOcrg</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Sands, Caroline J</creator><creator>Wolfer, Arnaud M</creator><creator>Correia, Gonçalo D S</creator><creator>Sadawi, Noureddin</creator><creator>Ahmed, Arfan</creator><creator>Jiménez, Beatriz</creator><creator>Lewis, Matthew R</creator><creator>Glen, Robert C</creator><creator>Nicholson, Jeremy K</creator><creator>Pearce, Jake T M</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5856-3218</orcidid><orcidid>https://orcid.org/0000-0002-3749-7941</orcidid><orcidid>https://orcid.org/0000-0003-4637-3171</orcidid></search><sort><creationdate>20191215</creationdate><title>The nPYc-Toolbox, a Python module for the pre-processing, quality-control and analysis of metabolic profiling datasets</title><author>Sands, Caroline J ; Wolfer, Arnaud M ; Correia, Gonçalo D S ; Sadawi, Noureddin ; Ahmed, Arfan ; Jiménez, Beatriz ; Lewis, Matthew R ; Glen, Robert C ; Nicholson, Jeremy K ; Pearce, Jake T M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-487cfb291f5bfb7ca54aca323a61e601de96e44ace330d65b0ebd85f2bd638963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications Notes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sands, Caroline J</creatorcontrib><creatorcontrib>Wolfer, Arnaud M</creatorcontrib><creatorcontrib>Correia, Gonçalo D S</creatorcontrib><creatorcontrib>Sadawi, Noureddin</creatorcontrib><creatorcontrib>Ahmed, Arfan</creatorcontrib><creatorcontrib>Jiménez, Beatriz</creatorcontrib><creatorcontrib>Lewis, Matthew R</creatorcontrib><creatorcontrib>Glen, Robert C</creatorcontrib><creatorcontrib>Nicholson, Jeremy K</creatorcontrib><creatorcontrib>Pearce, Jake T M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sands, Caroline J</au><au>Wolfer, Arnaud M</au><au>Correia, Gonçalo D S</au><au>Sadawi, Noureddin</au><au>Ahmed, Arfan</au><au>Jiménez, Beatriz</au><au>Lewis, Matthew R</au><au>Glen, Robert C</au><au>Nicholson, Jeremy K</au><au>Pearce, Jake T M</au><au>Valencia, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The nPYc-Toolbox, a Python module for the pre-processing, quality-control and analysis of metabolic profiling datasets</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2019-12-15</date><risdate>2019</risdate><volume>35</volume><issue>24</issue><spage>5359</spage><epage>5360</epage><pages>5359-5360</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>As large-scale metabolic phenotyping studies become increasingly common, the need for systemic methods for pre-processing and quality control (QC) of analytical data prior to statistical analysis has become increasingly important, both within a study, and to allow meaningful inter-study comparisons. The nPYc-Toolbox provides software for the import, pre-processing, QC and visualization of metabolic phenotyping datasets, either interactively, or in automated pipelines.
The nPYc-Toolbox is implemented in Python, and is freely available from the Python package index https://pypi.org/project/nPYc/, source is available at https://github.com/phenomecentre/nPYc-Toolbox. Full documentation can be found at http://npyc-toolbox.readthedocs.io/ and exemplar datasets and tutorials at https://github.com/phenomecentre/nPYc-toolbox-tutorials.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31350543</pmid><doi>10.1093/bioinformatics/btz566</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0001-5856-3218</orcidid><orcidid>https://orcid.org/0000-0002-3749-7941</orcidid><orcidid>https://orcid.org/0000-0003-4637-3171</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2019-12, Vol.35 (24), p.5359-5360 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6954639 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Applications Notes |
title | The nPYc-Toolbox, a Python module for the pre-processing, quality-control and analysis of metabolic profiling datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20nPYc-Toolbox,%20a%20Python%20module%20for%20the%20pre-processing,%20quality-control%20and%20analysis%20of%20metabolic%20profiling%20datasets&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Sands,%20Caroline%20J&rft.date=2019-12-15&rft.volume=35&rft.issue=24&rft.spage=5359&rft.epage=5360&rft.pages=5359-5360&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btz566&rft_dat=%3Cproquest_pubme%3E2265790189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265790189&rft_id=info:pmid/31350543&rfr_iscdi=true |