An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation
Summary MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development through interaction with basic helix‐loop‐helix (bHLH) TFs. MdbHLH33, an apple bHLH TF, has been identified as a positive regulator in cold tolerance and anthocyanin accumulation by a...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2020-02, Vol.18 (2), p.337-353 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 353 |
---|---|
container_issue | 2 |
container_start_page | 337 |
container_title | Plant biotechnology journal |
container_volume | 18 |
creator | An, Jian‐Ping Wang, Xiao‐Fei Zhang, Xiao‐Wei Xu, Hai‐Feng Bi, Si‐Qi You, Chun‐Xiang Hao, Yu‐Jin |
description | Summary
MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development through interaction with basic helix‐loop‐helix (bHLH) TFs. MdbHLH33, an apple bHLH TF, has been identified as a positive regulator in cold tolerance and anthocyanin accumulation by activating the expressions of MdCBF2 and MdDFR. In the present study, a MYB TF MdMYB308L was found to also positively regulate cold tolerance and anthocyanin accumulation in apple. We found that MdMYB308L interacted with MdbHLH33 and enhanced its binding to the promoters of MdCBF2 and MdDFR. In addition, an apple RING E3 ubiquitin ligase MYB30‐INTERACTING E3 LIGASE 1 (MdMIEL1) was identified to be an MdMYB308L‐interacting protein and promoted the ubiquitination degradation of MdMYB308L, thus negatively regulated cold tolerance and anthocyanin accumulation in apple. These results suggest that MdMYB308L acts as a positive regulator in cold tolerance and anthocyanin accumulation in apple by interacting with MdbHLH33 and undergoes MdMIEL1‐mediated protein degradation. The dynamic change in MYB‐bHLH protein complex seems to play a key role in the regulation of plant growth and development. |
doi_str_mv | 10.1111/pbi.13201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6953192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335070343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-b08b82f7aa2d8c89ba01695d8be1a8c643988f3da0af36eb981f31b2e87937463</originalsourceid><addsrcrecordid>eNp1kd1qFDEUx4Mo9kMvfAEJeGMvts3HTCZzI7Sl1oUteqEXXoVMcmabkk3GZMayd8Un8Bl9kma7dVHBQEjg_M7_fPwRekXJMS3nZOjcMeWM0Cdon1aimTWiZk93_6raQwc53xDCqKjFc7THKatJW7N99OM0YD0MHvDV1zM8Jh2ySW4YXQy412aMCSdYTl6PkLGJ3uIxeiiYAayDLXe8jmatgys6xkyrDbpJ3gSnYCEtY8m8ml8s6K-7nyuwrkhZbGGZtH1AX6BnvfYZXj6-h-jL-4vP5x9mi4-X8_PTxcxUFaezjshOsr7RmllpZNtpQkVbW9kB1dKIirdS9txqonsuoGsl7TntGMim5U0l-CF6t9Udpq70YSCUcb0aklvptFZRO_V3JLhrtYzfVanCacuKwNtHgRS_TZBHtXLZgPc6QJyyYmWpgjdl4QV98w96E6cUyniKcV6ThvCKF-poS5kUc07Q75qhRG2cVcVZ9eBsYV__2f2O_G1lAU62wK3zsP6_kvp0Nt9K3gOBgLBh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335070343</pqid></control><display><type>article</type><title>An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>An, Jian‐Ping ; Wang, Xiao‐Fei ; Zhang, Xiao‐Wei ; Xu, Hai‐Feng ; Bi, Si‐Qi ; You, Chun‐Xiang ; Hao, Yu‐Jin</creator><creatorcontrib>An, Jian‐Ping ; Wang, Xiao‐Fei ; Zhang, Xiao‐Wei ; Xu, Hai‐Feng ; Bi, Si‐Qi ; You, Chun‐Xiang ; Hao, Yu‐Jin</creatorcontrib><description>Summary
MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development through interaction with basic helix‐loop‐helix (bHLH) TFs. MdbHLH33, an apple bHLH TF, has been identified as a positive regulator in cold tolerance and anthocyanin accumulation by activating the expressions of MdCBF2 and MdDFR. In the present study, a MYB TF MdMYB308L was found to also positively regulate cold tolerance and anthocyanin accumulation in apple. We found that MdMYB308L interacted with MdbHLH33 and enhanced its binding to the promoters of MdCBF2 and MdDFR. In addition, an apple RING E3 ubiquitin ligase MYB30‐INTERACTING E3 LIGASE 1 (MdMIEL1) was identified to be an MdMYB308L‐interacting protein and promoted the ubiquitination degradation of MdMYB308L, thus negatively regulated cold tolerance and anthocyanin accumulation in apple. These results suggest that MdMYB308L acts as a positive regulator in cold tolerance and anthocyanin accumulation in apple by interacting with MdbHLH33 and undergoes MdMIEL1‐mediated protein degradation. The dynamic change in MYB‐bHLH protein complex seems to play a key role in the regulation of plant growth and development.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13201</identifier><identifier>PMID: 31250952</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Abiotic stress ; Accumulation ; anthocyanin accumulation ; apple ; Apples ; Biodegradation ; Biosynthesis ; Cold ; Cold tolerance ; Degradation ; E3 ubiquitin ligase ; Enzymes ; Fruits ; Gene expression ; Metabolism ; MYB transcription factor ; Phylogenetics ; Plant growth ; Polyamines ; Proteins ; Roles ; Stress response ; Transcription factors ; Ubiquitin ; Ubiquitin-protein ligase ; Ubiquitination</subject><ispartof>Plant biotechnology journal, 2020-02, Vol.18 (2), p.337-353</ispartof><rights>2019 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-b08b82f7aa2d8c89ba01695d8be1a8c643988f3da0af36eb981f31b2e87937463</citedby><cites>FETCH-LOGICAL-c4431-b08b82f7aa2d8c89ba01695d8be1a8c643988f3da0af36eb981f31b2e87937463</cites><orcidid>0000-0001-7258-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13201$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13201$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,865,886,1418,11564,27926,27927,45576,45577,46054,46478</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31250952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Jian‐Ping</creatorcontrib><creatorcontrib>Wang, Xiao‐Fei</creatorcontrib><creatorcontrib>Zhang, Xiao‐Wei</creatorcontrib><creatorcontrib>Xu, Hai‐Feng</creatorcontrib><creatorcontrib>Bi, Si‐Qi</creatorcontrib><creatorcontrib>You, Chun‐Xiang</creatorcontrib><creatorcontrib>Hao, Yu‐Jin</creatorcontrib><title>An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development through interaction with basic helix‐loop‐helix (bHLH) TFs. MdbHLH33, an apple bHLH TF, has been identified as a positive regulator in cold tolerance and anthocyanin accumulation by activating the expressions of MdCBF2 and MdDFR. In the present study, a MYB TF MdMYB308L was found to also positively regulate cold tolerance and anthocyanin accumulation in apple. We found that MdMYB308L interacted with MdbHLH33 and enhanced its binding to the promoters of MdCBF2 and MdDFR. In addition, an apple RING E3 ubiquitin ligase MYB30‐INTERACTING E3 LIGASE 1 (MdMIEL1) was identified to be an MdMYB308L‐interacting protein and promoted the ubiquitination degradation of MdMYB308L, thus negatively regulated cold tolerance and anthocyanin accumulation in apple. These results suggest that MdMYB308L acts as a positive regulator in cold tolerance and anthocyanin accumulation in apple by interacting with MdbHLH33 and undergoes MdMIEL1‐mediated protein degradation. The dynamic change in MYB‐bHLH protein complex seems to play a key role in the regulation of plant growth and development.</description><subject>Abiotic stress</subject><subject>Accumulation</subject><subject>anthocyanin accumulation</subject><subject>apple</subject><subject>Apples</subject><subject>Biodegradation</subject><subject>Biosynthesis</subject><subject>Cold</subject><subject>Cold tolerance</subject><subject>Degradation</subject><subject>E3 ubiquitin ligase</subject><subject>Enzymes</subject><subject>Fruits</subject><subject>Gene expression</subject><subject>Metabolism</subject><subject>MYB transcription factor</subject><subject>Phylogenetics</subject><subject>Plant growth</subject><subject>Polyamines</subject><subject>Proteins</subject><subject>Roles</subject><subject>Stress response</subject><subject>Transcription factors</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitination</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd1qFDEUx4Mo9kMvfAEJeGMvts3HTCZzI7Sl1oUteqEXXoVMcmabkk3GZMayd8Un8Bl9kma7dVHBQEjg_M7_fPwRekXJMS3nZOjcMeWM0Cdon1aimTWiZk93_6raQwc53xDCqKjFc7THKatJW7N99OM0YD0MHvDV1zM8Jh2ySW4YXQy412aMCSdYTl6PkLGJ3uIxeiiYAayDLXe8jmatgys6xkyrDbpJ3gSnYCEtY8m8ml8s6K-7nyuwrkhZbGGZtH1AX6BnvfYZXj6-h-jL-4vP5x9mi4-X8_PTxcxUFaezjshOsr7RmllpZNtpQkVbW9kB1dKIirdS9txqonsuoGsl7TntGMim5U0l-CF6t9Udpq70YSCUcb0aklvptFZRO_V3JLhrtYzfVanCacuKwNtHgRS_TZBHtXLZgPc6QJyyYmWpgjdl4QV98w96E6cUyniKcV6ThvCKF-poS5kUc07Q75qhRG2cVcVZ9eBsYV__2f2O_G1lAU62wK3zsP6_kvp0Nt9K3gOBgLBh</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>An, Jian‐Ping</creator><creator>Wang, Xiao‐Fei</creator><creator>Zhang, Xiao‐Wei</creator><creator>Xu, Hai‐Feng</creator><creator>Bi, Si‐Qi</creator><creator>You, Chun‐Xiang</creator><creator>Hao, Yu‐Jin</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7258-3792</orcidid></search><sort><creationdate>202002</creationdate><title>An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation</title><author>An, Jian‐Ping ; Wang, Xiao‐Fei ; Zhang, Xiao‐Wei ; Xu, Hai‐Feng ; Bi, Si‐Qi ; You, Chun‐Xiang ; Hao, Yu‐Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-b08b82f7aa2d8c89ba01695d8be1a8c643988f3da0af36eb981f31b2e87937463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abiotic stress</topic><topic>Accumulation</topic><topic>anthocyanin accumulation</topic><topic>apple</topic><topic>Apples</topic><topic>Biodegradation</topic><topic>Biosynthesis</topic><topic>Cold</topic><topic>Cold tolerance</topic><topic>Degradation</topic><topic>E3 ubiquitin ligase</topic><topic>Enzymes</topic><topic>Fruits</topic><topic>Gene expression</topic><topic>Metabolism</topic><topic>MYB transcription factor</topic><topic>Phylogenetics</topic><topic>Plant growth</topic><topic>Polyamines</topic><topic>Proteins</topic><topic>Roles</topic><topic>Stress response</topic><topic>Transcription factors</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Jian‐Ping</creatorcontrib><creatorcontrib>Wang, Xiao‐Fei</creatorcontrib><creatorcontrib>Zhang, Xiao‐Wei</creatorcontrib><creatorcontrib>Xu, Hai‐Feng</creatorcontrib><creatorcontrib>Bi, Si‐Qi</creatorcontrib><creatorcontrib>You, Chun‐Xiang</creatorcontrib><creatorcontrib>Hao, Yu‐Jin</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Jian‐Ping</au><au>Wang, Xiao‐Fei</au><au>Zhang, Xiao‐Wei</au><au>Xu, Hai‐Feng</au><au>Bi, Si‐Qi</au><au>You, Chun‐Xiang</au><au>Hao, Yu‐Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2020-02</date><risdate>2020</risdate><volume>18</volume><issue>2</issue><spage>337</spage><epage>353</epage><pages>337-353</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development through interaction with basic helix‐loop‐helix (bHLH) TFs. MdbHLH33, an apple bHLH TF, has been identified as a positive regulator in cold tolerance and anthocyanin accumulation by activating the expressions of MdCBF2 and MdDFR. In the present study, a MYB TF MdMYB308L was found to also positively regulate cold tolerance and anthocyanin accumulation in apple. We found that MdMYB308L interacted with MdbHLH33 and enhanced its binding to the promoters of MdCBF2 and MdDFR. In addition, an apple RING E3 ubiquitin ligase MYB30‐INTERACTING E3 LIGASE 1 (MdMIEL1) was identified to be an MdMYB308L‐interacting protein and promoted the ubiquitination degradation of MdMYB308L, thus negatively regulated cold tolerance and anthocyanin accumulation in apple. These results suggest that MdMYB308L acts as a positive regulator in cold tolerance and anthocyanin accumulation in apple by interacting with MdbHLH33 and undergoes MdMIEL1‐mediated protein degradation. The dynamic change in MYB‐bHLH protein complex seems to play a key role in the regulation of plant growth and development.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>31250952</pmid><doi>10.1111/pbi.13201</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7258-3792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2020-02, Vol.18 (2), p.337-353 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6953192 |
source | DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Abiotic stress Accumulation anthocyanin accumulation apple Apples Biodegradation Biosynthesis Cold Cold tolerance Degradation E3 ubiquitin ligase Enzymes Fruits Gene expression Metabolism MYB transcription factor Phylogenetics Plant growth Polyamines Proteins Roles Stress response Transcription factors Ubiquitin Ubiquitin-protein ligase Ubiquitination |
title | An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20apple%20MYB%20transcription%20factor%20regulates%20cold%20tolerance%20and%20anthocyanin%20accumulation%20and%20undergoes%20MIEL1%E2%80%90mediated%20degradation&rft.jtitle=Plant%20biotechnology%20journal&rft.au=An,%20Jian%E2%80%90Ping&rft.date=2020-02&rft.volume=18&rft.issue=2&rft.spage=337&rft.epage=353&rft.pages=337-353&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13201&rft_dat=%3Cproquest_pubme%3E2335070343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335070343&rft_id=info:pmid/31250952&rfr_iscdi=true |