Exosome Biogenesis in the Protozoa Parasite Giardia lamblia : A Model of Reduced Interorganellar Crosstalk
Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to anoth...
Gespeichert in:
Veröffentlicht in: | Cells (Basel, Switzerland) Switzerland), 2019-12, Vol.8 (12), p.1600 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1600 |
container_title | Cells (Basel, Switzerland) |
container_volume | 8 |
creator | Moyano, Sofía Musso, Juliana Feliziani, Constanza Zamponi, Nahuel Frontera, Lorena Soledad Ropolo, Andrea Silvana Lanfredi-Rangel, Adriana Lalle, Marco Touz, María |
description | Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite,
, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in
despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms. |
doi_str_mv | 10.3390/cells8121600 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6953089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548341300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-192a15d7d2253dbdd67fbc9304af17ce0b37da0a32d5334774635e2799d4f4e33</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EotXSG2dkiQsHFmyPE8cckMqqlEpFVAjO1iSebL0kcbETBPx6vGqpFnwZS_Ppzbx5jD2V4hWAFa87GobcSCVrIR6wYyUMrLUW9uHB_4id5LwT5TWylqJ6zI5ANlBpsMdsd_Yz5jgSfxfilibKIfMw8fma-FWKc_wdkV9hwhxm4ucBkw_IBxzbodQ3_JR_jJ4GHnv-mfzSkecX00wppi1OZTdMfJNizjMO356wRz0OmU7u6op9fX_2ZfNhffnp_GJzernutFTzWlqFsvLGK1WBb72vTd92FoTGXpqORAvGo0BQvgLQxugaKlLGWq97TQAr9vZW92ZpR_IdTXPCwd2kMGL65SIG929nCtduG3-42lYgGlsEXtwJpPh9oTy7MeT9pYuluGSnAIwQCsrgFXv-H7qLS5qKPacq3YCWIEShXt5S3f4Wifr7ZaRw-xzdYY4Ff3Zo4B7-mxr8Ae21mX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548341300</pqid></control><display><type>article</type><title>Exosome Biogenesis in the Protozoa Parasite Giardia lamblia : A Model of Reduced Interorganellar Crosstalk</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Moyano, Sofía ; Musso, Juliana ; Feliziani, Constanza ; Zamponi, Nahuel ; Frontera, Lorena Soledad ; Ropolo, Andrea Silvana ; Lanfredi-Rangel, Adriana ; Lalle, Marco ; Touz, María</creator><creatorcontrib>Moyano, Sofía ; Musso, Juliana ; Feliziani, Constanza ; Zamponi, Nahuel ; Frontera, Lorena Soledad ; Ropolo, Andrea Silvana ; Lanfredi-Rangel, Adriana ; Lalle, Marco ; Touz, María</creatorcontrib><description>Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite,
, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in
despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.</description><identifier>ISSN: 2073-4409</identifier><identifier>EISSN: 2073-4409</identifier><identifier>DOI: 10.3390/cells8121600</identifier><identifier>PMID: 31835439</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine triphosphatase ; Biosynthesis ; Cell interactions ; Cell signaling ; Cell survival ; Ceramide ; Cloning ; Cysts ; Endosomes ; Exosomes ; Giardia lamblia ; Infectious diseases ; Lipid composition ; Localization ; Mammals ; miRNA ; Parasites ; Plasma ; Protein composition ; Proteins ; Protozoa ; Small intestine ; Stationary phase ; Structure-function relationships ; Vacuoles ; Vesicles</subject><ispartof>Cells (Basel, Switzerland), 2019-12, Vol.8 (12), p.1600</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-192a15d7d2253dbdd67fbc9304af17ce0b37da0a32d5334774635e2799d4f4e33</citedby><cites>FETCH-LOGICAL-c412t-192a15d7d2253dbdd67fbc9304af17ce0b37da0a32d5334774635e2799d4f4e33</cites><orcidid>0000-0003-2812-1501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953089/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953089/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31835439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moyano, Sofía</creatorcontrib><creatorcontrib>Musso, Juliana</creatorcontrib><creatorcontrib>Feliziani, Constanza</creatorcontrib><creatorcontrib>Zamponi, Nahuel</creatorcontrib><creatorcontrib>Frontera, Lorena Soledad</creatorcontrib><creatorcontrib>Ropolo, Andrea Silvana</creatorcontrib><creatorcontrib>Lanfredi-Rangel, Adriana</creatorcontrib><creatorcontrib>Lalle, Marco</creatorcontrib><creatorcontrib>Touz, María</creatorcontrib><title>Exosome Biogenesis in the Protozoa Parasite Giardia lamblia : A Model of Reduced Interorganellar Crosstalk</title><title>Cells (Basel, Switzerland)</title><addtitle>Cells</addtitle><description>Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite,
, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in
despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.</description><subject>Adenosine triphosphatase</subject><subject>Biosynthesis</subject><subject>Cell interactions</subject><subject>Cell signaling</subject><subject>Cell survival</subject><subject>Ceramide</subject><subject>Cloning</subject><subject>Cysts</subject><subject>Endosomes</subject><subject>Exosomes</subject><subject>Giardia lamblia</subject><subject>Infectious diseases</subject><subject>Lipid composition</subject><subject>Localization</subject><subject>Mammals</subject><subject>miRNA</subject><subject>Parasites</subject><subject>Plasma</subject><subject>Protein composition</subject><subject>Proteins</subject><subject>Protozoa</subject><subject>Small intestine</subject><subject>Stationary phase</subject><subject>Structure-function relationships</subject><subject>Vacuoles</subject><subject>Vesicles</subject><issn>2073-4409</issn><issn>2073-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkUFv1DAQhS0EotXSG2dkiQsHFmyPE8cckMqqlEpFVAjO1iSebL0kcbETBPx6vGqpFnwZS_Ppzbx5jD2V4hWAFa87GobcSCVrIR6wYyUMrLUW9uHB_4id5LwT5TWylqJ6zI5ANlBpsMdsd_Yz5jgSfxfilibKIfMw8fma-FWKc_wdkV9hwhxm4ucBkw_IBxzbodQ3_JR_jJ4GHnv-mfzSkecX00wppi1OZTdMfJNizjMO356wRz0OmU7u6op9fX_2ZfNhffnp_GJzernutFTzWlqFsvLGK1WBb72vTd92FoTGXpqORAvGo0BQvgLQxugaKlLGWq97TQAr9vZW92ZpR_IdTXPCwd2kMGL65SIG929nCtduG3-42lYgGlsEXtwJpPh9oTy7MeT9pYuluGSnAIwQCsrgFXv-H7qLS5qKPacq3YCWIEShXt5S3f4Wifr7ZaRw-xzdYY4Ff3Zo4B7-mxr8Ae21mX8</recordid><startdate>20191209</startdate><enddate>20191209</enddate><creator>Moyano, Sofía</creator><creator>Musso, Juliana</creator><creator>Feliziani, Constanza</creator><creator>Zamponi, Nahuel</creator><creator>Frontera, Lorena Soledad</creator><creator>Ropolo, Andrea Silvana</creator><creator>Lanfredi-Rangel, Adriana</creator><creator>Lalle, Marco</creator><creator>Touz, María</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2812-1501</orcidid></search><sort><creationdate>20191209</creationdate><title>Exosome Biogenesis in the Protozoa Parasite Giardia lamblia : A Model of Reduced Interorganellar Crosstalk</title><author>Moyano, Sofía ; Musso, Juliana ; Feliziani, Constanza ; Zamponi, Nahuel ; Frontera, Lorena Soledad ; Ropolo, Andrea Silvana ; Lanfredi-Rangel, Adriana ; Lalle, Marco ; Touz, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-192a15d7d2253dbdd67fbc9304af17ce0b37da0a32d5334774635e2799d4f4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine triphosphatase</topic><topic>Biosynthesis</topic><topic>Cell interactions</topic><topic>Cell signaling</topic><topic>Cell survival</topic><topic>Ceramide</topic><topic>Cloning</topic><topic>Cysts</topic><topic>Endosomes</topic><topic>Exosomes</topic><topic>Giardia lamblia</topic><topic>Infectious diseases</topic><topic>Lipid composition</topic><topic>Localization</topic><topic>Mammals</topic><topic>miRNA</topic><topic>Parasites</topic><topic>Plasma</topic><topic>Protein composition</topic><topic>Proteins</topic><topic>Protozoa</topic><topic>Small intestine</topic><topic>Stationary phase</topic><topic>Structure-function relationships</topic><topic>Vacuoles</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moyano, Sofía</creatorcontrib><creatorcontrib>Musso, Juliana</creatorcontrib><creatorcontrib>Feliziani, Constanza</creatorcontrib><creatorcontrib>Zamponi, Nahuel</creatorcontrib><creatorcontrib>Frontera, Lorena Soledad</creatorcontrib><creatorcontrib>Ropolo, Andrea Silvana</creatorcontrib><creatorcontrib>Lanfredi-Rangel, Adriana</creatorcontrib><creatorcontrib>Lalle, Marco</creatorcontrib><creatorcontrib>Touz, María</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cells (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moyano, Sofía</au><au>Musso, Juliana</au><au>Feliziani, Constanza</au><au>Zamponi, Nahuel</au><au>Frontera, Lorena Soledad</au><au>Ropolo, Andrea Silvana</au><au>Lanfredi-Rangel, Adriana</au><au>Lalle, Marco</au><au>Touz, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exosome Biogenesis in the Protozoa Parasite Giardia lamblia : A Model of Reduced Interorganellar Crosstalk</atitle><jtitle>Cells (Basel, Switzerland)</jtitle><addtitle>Cells</addtitle><date>2019-12-09</date><risdate>2019</risdate><volume>8</volume><issue>12</issue><spage>1600</spage><pages>1600-</pages><issn>2073-4409</issn><eissn>2073-4409</eissn><abstract>Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite,
, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in
despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31835439</pmid><doi>10.3390/cells8121600</doi><orcidid>https://orcid.org/0000-0003-2812-1501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4409 |
ispartof | Cells (Basel, Switzerland), 2019-12, Vol.8 (12), p.1600 |
issn | 2073-4409 2073-4409 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6953089 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Adenosine triphosphatase Biosynthesis Cell interactions Cell signaling Cell survival Ceramide Cloning Cysts Endosomes Exosomes Giardia lamblia Infectious diseases Lipid composition Localization Mammals miRNA Parasites Plasma Protein composition Proteins Protozoa Small intestine Stationary phase Structure-function relationships Vacuoles Vesicles |
title | Exosome Biogenesis in the Protozoa Parasite Giardia lamblia : A Model of Reduced Interorganellar Crosstalk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exosome%20Biogenesis%20in%20the%20Protozoa%20Parasite%20Giardia%20lamblia%20:%20A%20Model%20of%20Reduced%20Interorganellar%20Crosstalk&rft.jtitle=Cells%20(Basel,%20Switzerland)&rft.au=Moyano,%20Sof%C3%ADa&rft.date=2019-12-09&rft.volume=8&rft.issue=12&rft.spage=1600&rft.pages=1600-&rft.issn=2073-4409&rft.eissn=2073-4409&rft_id=info:doi/10.3390/cells8121600&rft_dat=%3Cproquest_pubme%3E2548341300%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548341300&rft_id=info:pmid/31835439&rfr_iscdi=true |