Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells

Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2020-01, Vol.28 (1), p.129-141
Hauptverfasser: Hiramoto, Takafumi, Tahara, Maino, Liao, Jiyuan, Soda, Yasushi, Miura, Yoshie, Kurita, Ryo, Hamana, Hiroshi, Inoue, Kota, Kohara, Hiroshi, Miyamoto, Shohei, Hijikata, Yasuki, Okano, Shinji, Yamaguchi, Yoshiyuki, Oda, Yoshinao, Ichiyanagi, Kenji, Toh, Hidehiro, Sasaki, Hiroyuki, Kishi, Hiroyuki, Ryo, Akihide, Muraguchi, Atsushi, Takeda, Makoto, Tani, Kenzaburo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1
container_start_page 129
container_title Molecular therapy
container_volume 28
creator Hiramoto, Takafumi
Tahara, Maino
Liao, Jiyuan
Soda, Yasushi
Miura, Yoshie
Kurita, Ryo
Hamana, Hiroshi
Inoue, Kota
Kohara, Hiroshi
Miyamoto, Shohei
Hijikata, Yasuki
Okano, Shinji
Yamaguchi, Yoshiyuki
Oda, Yoshinao
Ichiyanagi, Kenji
Toh, Hidehiro
Sasaki, Hiroyuki
Kishi, Hiroyuki
Ryo, Akihide
Muraguchi, Atsushi
Takeda, Makoto
Tani, Kenzaburo
description Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy. This new non-transmissible and non-integrating measles virus vector, which can transfer multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors and induce primed or naive-like pluripotent stem cells from hematopoietic cells in the same condition, will definitely contribute to the gene and cell therapy.
doi_str_mv 10.1016/j.ymthe.2019.09.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6952176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001619304101</els_id><sourcerecordid>2334672676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-d9e7233844b15108cb108df575b25450954042ac34efce98bcc122d1093d34073</originalsourceid><addsrcrecordid>eNp9kdtuEzEQhi1ERQ_wBEjIEjfcbOrjOr4AqUpPSKUgWnpreb2zjaPddbCdVnl73KREwAXSyB7Ln3_PzI_QW0omlND6eDFZD3kOE0aonpASRL1AB1QyWRHCxMtdTut9dJjSomRU6voV2ue0VkpLeYDSdRirHO2YBp-Sb3rAX-7wHbgcIn70eY5v4H6AMUOLv1-f4AsYwwD4LGXb9D7NIeFT33UQC4Jv18tyDh32325mCXcxDPgSBpvDMnjI3uEZ9H16jfY62yd487wfoR_nZ7ezy-rq68Xn2clV5cRU5arVoBjnUyEaKimZuqYsbSeVbJgUkmgpiGDWcQGdAz1tnKOMtZRo3nJBFD9Cn7a6y1UzQOtKidH2Zhn9YOPaBOvN3zejn5v78GBqLRlVdRH48CwQw88VpGzKkFxpwY4QVskwTqlmvGaioO__QRdhFcfSXqG4qBWrN4J8S7kYUorQ7YqhxDyZahZmY6p5MtWQEps-3v3Zx-7NbxcL8HELQJnmg4dokvMwOmh9LE6aNvj_fvALYLG0XA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334672676</pqid></control><display><type>article</type><title>Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hiramoto, Takafumi ; Tahara, Maino ; Liao, Jiyuan ; Soda, Yasushi ; Miura, Yoshie ; Kurita, Ryo ; Hamana, Hiroshi ; Inoue, Kota ; Kohara, Hiroshi ; Miyamoto, Shohei ; Hijikata, Yasuki ; Okano, Shinji ; Yamaguchi, Yoshiyuki ; Oda, Yoshinao ; Ichiyanagi, Kenji ; Toh, Hidehiro ; Sasaki, Hiroyuki ; Kishi, Hiroyuki ; Ryo, Akihide ; Muraguchi, Atsushi ; Takeda, Makoto ; Tani, Kenzaburo</creator><creatorcontrib>Hiramoto, Takafumi ; Tahara, Maino ; Liao, Jiyuan ; Soda, Yasushi ; Miura, Yoshie ; Kurita, Ryo ; Hamana, Hiroshi ; Inoue, Kota ; Kohara, Hiroshi ; Miyamoto, Shohei ; Hijikata, Yasuki ; Okano, Shinji ; Yamaguchi, Yoshiyuki ; Oda, Yoshinao ; Ichiyanagi, Kenji ; Toh, Hidehiro ; Sasaki, Hiroyuki ; Kishi, Hiroyuki ; Ryo, Akihide ; Muraguchi, Atsushi ; Takeda, Makoto ; Tani, Kenzaburo</creatorcontrib><description>Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy. This new non-transmissible and non-integrating measles virus vector, which can transfer multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors and induce primed or naive-like pluripotent stem cells from hematopoietic cells in the same condition, will definitely contribute to the gene and cell therapy.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2019.09.007</identifier><identifier>PMID: 31677955</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blood Donors ; CD150 antigen ; CD46 antigen ; Cell differentiation ; Cell Differentiation - genetics ; Cellular Reprogramming - genetics ; Cloning ; Efficiency ; Fibroblasts ; Fibroblasts - metabolism ; Gene expression ; Gene order ; Gene therapy ; Genetic Therapy - methods ; Genetic Vectors ; Genome editing ; Genome, Viral - genetics ; Genomes ; Green fluorescent protein ; HEK293 Cells ; hematopoietic stem cell ; Hematopoietic stem cells ; Hematopoietic Stem Cells - metabolism ; Heterografts ; Humans ; Induced Pluripotent Stem Cells - metabolism ; iPSC ; Kinases ; Lymphocytes ; Lymphocytes T ; Male ; Measles ; measles virus ; Measles virus - genetics ; Mice ; Mice, Inbred NOD ; naïve ; non-integrating ; non-transmissible ; Original ; Peripheral blood ; Pluripotency ; Progenitor cells ; Proteins ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA virus ; RNA, Viral - genetics ; segmented RNA genome ; Sendai virus - genetics ; Stem cells ; T cell receptors ; T-Lymphocytes - metabolism ; Transduction, Genetic ; Transgenes ; vector ; viral gene transfer vector</subject><ispartof>Molecular therapy, 2020-01, Vol.28 (1), p.129-141</ispartof><rights>2019 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2019 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The American Society of Gene and Cell Therapy</rights><rights>2019 The American Society of Gene and Cell Therapy. 2019 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-d9e7233844b15108cb108df575b25450954042ac34efce98bcc122d1093d34073</citedby><cites>FETCH-LOGICAL-c487t-d9e7233844b15108cb108df575b25450954042ac34efce98bcc122d1093d34073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952176/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952176/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31677955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiramoto, Takafumi</creatorcontrib><creatorcontrib>Tahara, Maino</creatorcontrib><creatorcontrib>Liao, Jiyuan</creatorcontrib><creatorcontrib>Soda, Yasushi</creatorcontrib><creatorcontrib>Miura, Yoshie</creatorcontrib><creatorcontrib>Kurita, Ryo</creatorcontrib><creatorcontrib>Hamana, Hiroshi</creatorcontrib><creatorcontrib>Inoue, Kota</creatorcontrib><creatorcontrib>Kohara, Hiroshi</creatorcontrib><creatorcontrib>Miyamoto, Shohei</creatorcontrib><creatorcontrib>Hijikata, Yasuki</creatorcontrib><creatorcontrib>Okano, Shinji</creatorcontrib><creatorcontrib>Yamaguchi, Yoshiyuki</creatorcontrib><creatorcontrib>Oda, Yoshinao</creatorcontrib><creatorcontrib>Ichiyanagi, Kenji</creatorcontrib><creatorcontrib>Toh, Hidehiro</creatorcontrib><creatorcontrib>Sasaki, Hiroyuki</creatorcontrib><creatorcontrib>Kishi, Hiroyuki</creatorcontrib><creatorcontrib>Ryo, Akihide</creatorcontrib><creatorcontrib>Muraguchi, Atsushi</creatorcontrib><creatorcontrib>Takeda, Makoto</creatorcontrib><creatorcontrib>Tani, Kenzaburo</creatorcontrib><title>Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy. This new non-transmissible and non-integrating measles virus vector, which can transfer multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors and induce primed or naive-like pluripotent stem cells from hematopoietic cells in the same condition, will definitely contribute to the gene and cell therapy.</description><subject>Animals</subject><subject>Blood Donors</subject><subject>CD150 antigen</subject><subject>CD46 antigen</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cellular Reprogramming - genetics</subject><subject>Cloning</subject><subject>Efficiency</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Gene expression</subject><subject>Gene order</subject><subject>Gene therapy</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors</subject><subject>Genome editing</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Green fluorescent protein</subject><subject>HEK293 Cells</subject><subject>hematopoietic stem cell</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>iPSC</subject><subject>Kinases</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Measles</subject><subject>measles virus</subject><subject>Measles virus - genetics</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>naïve</subject><subject>non-integrating</subject><subject>non-transmissible</subject><subject>Original</subject><subject>Peripheral blood</subject><subject>Pluripotency</subject><subject>Progenitor cells</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA virus</subject><subject>RNA, Viral - genetics</subject><subject>segmented RNA genome</subject><subject>Sendai virus - genetics</subject><subject>Stem cells</subject><subject>T cell receptors</subject><subject>T-Lymphocytes - metabolism</subject><subject>Transduction, Genetic</subject><subject>Transgenes</subject><subject>vector</subject><subject>viral gene transfer vector</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdtuEzEQhi1ERQ_wBEjIEjfcbOrjOr4AqUpPSKUgWnpreb2zjaPddbCdVnl73KREwAXSyB7Ln3_PzI_QW0omlND6eDFZD3kOE0aonpASRL1AB1QyWRHCxMtdTut9dJjSomRU6voV2ue0VkpLeYDSdRirHO2YBp-Sb3rAX-7wHbgcIn70eY5v4H6AMUOLv1-f4AsYwwD4LGXb9D7NIeFT33UQC4Jv18tyDh32325mCXcxDPgSBpvDMnjI3uEZ9H16jfY62yd487wfoR_nZ7ezy-rq68Xn2clV5cRU5arVoBjnUyEaKimZuqYsbSeVbJgUkmgpiGDWcQGdAz1tnKOMtZRo3nJBFD9Cn7a6y1UzQOtKidH2Zhn9YOPaBOvN3zejn5v78GBqLRlVdRH48CwQw88VpGzKkFxpwY4QVskwTqlmvGaioO__QRdhFcfSXqG4qBWrN4J8S7kYUorQ7YqhxDyZahZmY6p5MtWQEps-3v3Zx-7NbxcL8HELQJnmg4dokvMwOmh9LE6aNvj_fvALYLG0XA</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Hiramoto, Takafumi</creator><creator>Tahara, Maino</creator><creator>Liao, Jiyuan</creator><creator>Soda, Yasushi</creator><creator>Miura, Yoshie</creator><creator>Kurita, Ryo</creator><creator>Hamana, Hiroshi</creator><creator>Inoue, Kota</creator><creator>Kohara, Hiroshi</creator><creator>Miyamoto, Shohei</creator><creator>Hijikata, Yasuki</creator><creator>Okano, Shinji</creator><creator>Yamaguchi, Yoshiyuki</creator><creator>Oda, Yoshinao</creator><creator>Ichiyanagi, Kenji</creator><creator>Toh, Hidehiro</creator><creator>Sasaki, Hiroyuki</creator><creator>Kishi, Hiroyuki</creator><creator>Ryo, Akihide</creator><creator>Muraguchi, Atsushi</creator><creator>Takeda, Makoto</creator><creator>Tani, Kenzaburo</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene &amp; Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200108</creationdate><title>Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells</title><author>Hiramoto, Takafumi ; Tahara, Maino ; Liao, Jiyuan ; Soda, Yasushi ; Miura, Yoshie ; Kurita, Ryo ; Hamana, Hiroshi ; Inoue, Kota ; Kohara, Hiroshi ; Miyamoto, Shohei ; Hijikata, Yasuki ; Okano, Shinji ; Yamaguchi, Yoshiyuki ; Oda, Yoshinao ; Ichiyanagi, Kenji ; Toh, Hidehiro ; Sasaki, Hiroyuki ; Kishi, Hiroyuki ; Ryo, Akihide ; Muraguchi, Atsushi ; Takeda, Makoto ; Tani, Kenzaburo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-d9e7233844b15108cb108df575b25450954042ac34efce98bcc122d1093d34073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Blood Donors</topic><topic>CD150 antigen</topic><topic>CD46 antigen</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cellular Reprogramming - genetics</topic><topic>Cloning</topic><topic>Efficiency</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Gene expression</topic><topic>Gene order</topic><topic>Gene therapy</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors</topic><topic>Genome editing</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Green fluorescent protein</topic><topic>HEK293 Cells</topic><topic>hematopoietic stem cell</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>iPSC</topic><topic>Kinases</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Measles</topic><topic>measles virus</topic><topic>Measles virus - genetics</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>naïve</topic><topic>non-integrating</topic><topic>non-transmissible</topic><topic>Original</topic><topic>Peripheral blood</topic><topic>Pluripotency</topic><topic>Progenitor cells</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA virus</topic><topic>RNA, Viral - genetics</topic><topic>segmented RNA genome</topic><topic>Sendai virus - genetics</topic><topic>Stem cells</topic><topic>T cell receptors</topic><topic>T-Lymphocytes - metabolism</topic><topic>Transduction, Genetic</topic><topic>Transgenes</topic><topic>vector</topic><topic>viral gene transfer vector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiramoto, Takafumi</creatorcontrib><creatorcontrib>Tahara, Maino</creatorcontrib><creatorcontrib>Liao, Jiyuan</creatorcontrib><creatorcontrib>Soda, Yasushi</creatorcontrib><creatorcontrib>Miura, Yoshie</creatorcontrib><creatorcontrib>Kurita, Ryo</creatorcontrib><creatorcontrib>Hamana, Hiroshi</creatorcontrib><creatorcontrib>Inoue, Kota</creatorcontrib><creatorcontrib>Kohara, Hiroshi</creatorcontrib><creatorcontrib>Miyamoto, Shohei</creatorcontrib><creatorcontrib>Hijikata, Yasuki</creatorcontrib><creatorcontrib>Okano, Shinji</creatorcontrib><creatorcontrib>Yamaguchi, Yoshiyuki</creatorcontrib><creatorcontrib>Oda, Yoshinao</creatorcontrib><creatorcontrib>Ichiyanagi, Kenji</creatorcontrib><creatorcontrib>Toh, Hidehiro</creatorcontrib><creatorcontrib>Sasaki, Hiroyuki</creatorcontrib><creatorcontrib>Kishi, Hiroyuki</creatorcontrib><creatorcontrib>Ryo, Akihide</creatorcontrib><creatorcontrib>Muraguchi, Atsushi</creatorcontrib><creatorcontrib>Takeda, Makoto</creatorcontrib><creatorcontrib>Tani, Kenzaburo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiramoto, Takafumi</au><au>Tahara, Maino</au><au>Liao, Jiyuan</au><au>Soda, Yasushi</au><au>Miura, Yoshie</au><au>Kurita, Ryo</au><au>Hamana, Hiroshi</au><au>Inoue, Kota</au><au>Kohara, Hiroshi</au><au>Miyamoto, Shohei</au><au>Hijikata, Yasuki</au><au>Okano, Shinji</au><au>Yamaguchi, Yoshiyuki</au><au>Oda, Yoshinao</au><au>Ichiyanagi, Kenji</au><au>Toh, Hidehiro</au><au>Sasaki, Hiroyuki</au><au>Kishi, Hiroyuki</au><au>Ryo, Akihide</au><au>Muraguchi, Atsushi</au><au>Takeda, Makoto</au><au>Tani, Kenzaburo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>129</spage><epage>141</epage><pages>129-141</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy. This new non-transmissible and non-integrating measles virus vector, which can transfer multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors and induce primed or naive-like pluripotent stem cells from hematopoietic cells in the same condition, will definitely contribute to the gene and cell therapy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31677955</pmid><doi>10.1016/j.ymthe.2019.09.007</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2020-01, Vol.28 (1), p.129-141
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6952176
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Blood Donors
CD150 antigen
CD46 antigen
Cell differentiation
Cell Differentiation - genetics
Cellular Reprogramming - genetics
Cloning
Efficiency
Fibroblasts
Fibroblasts - metabolism
Gene expression
Gene order
Gene therapy
Genetic Therapy - methods
Genetic Vectors
Genome editing
Genome, Viral - genetics
Genomes
Green fluorescent protein
HEK293 Cells
hematopoietic stem cell
Hematopoietic stem cells
Hematopoietic Stem Cells - metabolism
Heterografts
Humans
Induced Pluripotent Stem Cells - metabolism
iPSC
Kinases
Lymphocytes
Lymphocytes T
Male
Measles
measles virus
Measles virus - genetics
Mice
Mice, Inbred NOD
naïve
non-integrating
non-transmissible
Original
Peripheral blood
Pluripotency
Progenitor cells
Proteins
Ribonucleic acid
RNA
RNA polymerase
RNA virus
RNA, Viral - genetics
segmented RNA genome
Sendai virus - genetics
Stem cells
T cell receptors
T-Lymphocytes - metabolism
Transduction, Genetic
Transgenes
vector
viral gene transfer vector
title Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-transmissible%20MV%20Vector%20with%20Segmented%20RNA%20Genome%20Establishes%20Different%20Types%20of%20iPSCs%20from%20Hematopoietic%20Cells&rft.jtitle=Molecular%20therapy&rft.au=Hiramoto,%20Takafumi&rft.date=2020-01-08&rft.volume=28&rft.issue=1&rft.spage=129&rft.epage=141&rft.pages=129-141&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2019.09.007&rft_dat=%3Cproquest_pubme%3E2334672676%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334672676&rft_id=info:pmid/31677955&rft_els_id=S1525001619304101&rfr_iscdi=true