Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells
Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-int...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2020-01, Vol.28 (1), p.129-141 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 1 |
container_start_page | 129 |
container_title | Molecular therapy |
container_volume | 28 |
creator | Hiramoto, Takafumi Tahara, Maino Liao, Jiyuan Soda, Yasushi Miura, Yoshie Kurita, Ryo Hamana, Hiroshi Inoue, Kota Kohara, Hiroshi Miyamoto, Shohei Hijikata, Yasuki Okano, Shinji Yamaguchi, Yoshiyuki Oda, Yoshinao Ichiyanagi, Kenji Toh, Hidehiro Sasaki, Hiroyuki Kishi, Hiroyuki Ryo, Akihide Muraguchi, Atsushi Takeda, Makoto Tani, Kenzaburo |
description | Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy.
This new non-transmissible and non-integrating measles virus vector, which can transfer multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors and induce primed or naive-like pluripotent stem cells from hematopoietic cells in the same condition, will definitely contribute to the gene and cell therapy. |
doi_str_mv | 10.1016/j.ymthe.2019.09.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6952176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001619304101</els_id><sourcerecordid>2334672676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-d9e7233844b15108cb108df575b25450954042ac34efce98bcc122d1093d34073</originalsourceid><addsrcrecordid>eNp9kdtuEzEQhi1ERQ_wBEjIEjfcbOrjOr4AqUpPSKUgWnpreb2zjaPddbCdVnl73KREwAXSyB7Ln3_PzI_QW0omlND6eDFZD3kOE0aonpASRL1AB1QyWRHCxMtdTut9dJjSomRU6voV2ue0VkpLeYDSdRirHO2YBp-Sb3rAX-7wHbgcIn70eY5v4H6AMUOLv1-f4AsYwwD4LGXb9D7NIeFT33UQC4Jv18tyDh32325mCXcxDPgSBpvDMnjI3uEZ9H16jfY62yd487wfoR_nZ7ezy-rq68Xn2clV5cRU5arVoBjnUyEaKimZuqYsbSeVbJgUkmgpiGDWcQGdAz1tnKOMtZRo3nJBFD9Cn7a6y1UzQOtKidH2Zhn9YOPaBOvN3zejn5v78GBqLRlVdRH48CwQw88VpGzKkFxpwY4QVskwTqlmvGaioO__QRdhFcfSXqG4qBWrN4J8S7kYUorQ7YqhxDyZahZmY6p5MtWQEps-3v3Zx-7NbxcL8HELQJnmg4dokvMwOmh9LE6aNvj_fvALYLG0XA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334672676</pqid></control><display><type>article</type><title>Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hiramoto, Takafumi ; Tahara, Maino ; Liao, Jiyuan ; Soda, Yasushi ; Miura, Yoshie ; Kurita, Ryo ; Hamana, Hiroshi ; Inoue, Kota ; Kohara, Hiroshi ; Miyamoto, Shohei ; Hijikata, Yasuki ; Okano, Shinji ; Yamaguchi, Yoshiyuki ; Oda, Yoshinao ; Ichiyanagi, Kenji ; Toh, Hidehiro ; Sasaki, Hiroyuki ; Kishi, Hiroyuki ; Ryo, Akihide ; Muraguchi, Atsushi ; Takeda, Makoto ; Tani, Kenzaburo</creator><creatorcontrib>Hiramoto, Takafumi ; Tahara, Maino ; Liao, Jiyuan ; Soda, Yasushi ; Miura, Yoshie ; Kurita, Ryo ; Hamana, Hiroshi ; Inoue, Kota ; Kohara, Hiroshi ; Miyamoto, Shohei ; Hijikata, Yasuki ; Okano, Shinji ; Yamaguchi, Yoshiyuki ; Oda, Yoshinao ; Ichiyanagi, Kenji ; Toh, Hidehiro ; Sasaki, Hiroyuki ; Kishi, Hiroyuki ; Ryo, Akihide ; Muraguchi, Atsushi ; Takeda, Makoto ; Tani, Kenzaburo</creatorcontrib><description>Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy.
This new non-transmissible and non-integrating measles virus vector, which can transfer multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors and induce primed or naive-like pluripotent stem cells from hematopoietic cells in the same condition, will definitely contribute to the gene and cell therapy.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2019.09.007</identifier><identifier>PMID: 31677955</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blood Donors ; CD150 antigen ; CD46 antigen ; Cell differentiation ; Cell Differentiation - genetics ; Cellular Reprogramming - genetics ; Cloning ; Efficiency ; Fibroblasts ; Fibroblasts - metabolism ; Gene expression ; Gene order ; Gene therapy ; Genetic Therapy - methods ; Genetic Vectors ; Genome editing ; Genome, Viral - genetics ; Genomes ; Green fluorescent protein ; HEK293 Cells ; hematopoietic stem cell ; Hematopoietic stem cells ; Hematopoietic Stem Cells - metabolism ; Heterografts ; Humans ; Induced Pluripotent Stem Cells - metabolism ; iPSC ; Kinases ; Lymphocytes ; Lymphocytes T ; Male ; Measles ; measles virus ; Measles virus - genetics ; Mice ; Mice, Inbred NOD ; naïve ; non-integrating ; non-transmissible ; Original ; Peripheral blood ; Pluripotency ; Progenitor cells ; Proteins ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA virus ; RNA, Viral - genetics ; segmented RNA genome ; Sendai virus - genetics ; Stem cells ; T cell receptors ; T-Lymphocytes - metabolism ; Transduction, Genetic ; Transgenes ; vector ; viral gene transfer vector</subject><ispartof>Molecular therapy, 2020-01, Vol.28 (1), p.129-141</ispartof><rights>2019 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2019 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The American Society of Gene and Cell Therapy</rights><rights>2019 The American Society of Gene and Cell Therapy. 2019 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-d9e7233844b15108cb108df575b25450954042ac34efce98bcc122d1093d34073</citedby><cites>FETCH-LOGICAL-c487t-d9e7233844b15108cb108df575b25450954042ac34efce98bcc122d1093d34073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952176/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952176/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31677955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiramoto, Takafumi</creatorcontrib><creatorcontrib>Tahara, Maino</creatorcontrib><creatorcontrib>Liao, Jiyuan</creatorcontrib><creatorcontrib>Soda, Yasushi</creatorcontrib><creatorcontrib>Miura, Yoshie</creatorcontrib><creatorcontrib>Kurita, Ryo</creatorcontrib><creatorcontrib>Hamana, Hiroshi</creatorcontrib><creatorcontrib>Inoue, Kota</creatorcontrib><creatorcontrib>Kohara, Hiroshi</creatorcontrib><creatorcontrib>Miyamoto, Shohei</creatorcontrib><creatorcontrib>Hijikata, Yasuki</creatorcontrib><creatorcontrib>Okano, Shinji</creatorcontrib><creatorcontrib>Yamaguchi, Yoshiyuki</creatorcontrib><creatorcontrib>Oda, Yoshinao</creatorcontrib><creatorcontrib>Ichiyanagi, Kenji</creatorcontrib><creatorcontrib>Toh, Hidehiro</creatorcontrib><creatorcontrib>Sasaki, Hiroyuki</creatorcontrib><creatorcontrib>Kishi, Hiroyuki</creatorcontrib><creatorcontrib>Ryo, Akihide</creatorcontrib><creatorcontrib>Muraguchi, Atsushi</creatorcontrib><creatorcontrib>Takeda, Makoto</creatorcontrib><creatorcontrib>Tani, Kenzaburo</creatorcontrib><title>Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy.
This new non-transmissible and non-integrating measles virus vector, which can transfer multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors and induce primed or naive-like pluripotent stem cells from hematopoietic cells in the same condition, will definitely contribute to the gene and cell therapy.</description><subject>Animals</subject><subject>Blood Donors</subject><subject>CD150 antigen</subject><subject>CD46 antigen</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cellular Reprogramming - genetics</subject><subject>Cloning</subject><subject>Efficiency</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Gene expression</subject><subject>Gene order</subject><subject>Gene therapy</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors</subject><subject>Genome editing</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Green fluorescent protein</subject><subject>HEK293 Cells</subject><subject>hematopoietic stem cell</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>iPSC</subject><subject>Kinases</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Measles</subject><subject>measles virus</subject><subject>Measles virus - genetics</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>naïve</subject><subject>non-integrating</subject><subject>non-transmissible</subject><subject>Original</subject><subject>Peripheral blood</subject><subject>Pluripotency</subject><subject>Progenitor cells</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA virus</subject><subject>RNA, Viral - genetics</subject><subject>segmented RNA genome</subject><subject>Sendai virus - genetics</subject><subject>Stem cells</subject><subject>T cell receptors</subject><subject>T-Lymphocytes - metabolism</subject><subject>Transduction, Genetic</subject><subject>Transgenes</subject><subject>vector</subject><subject>viral gene transfer vector</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdtuEzEQhi1ERQ_wBEjIEjfcbOrjOr4AqUpPSKUgWnpreb2zjaPddbCdVnl73KREwAXSyB7Ln3_PzI_QW0omlND6eDFZD3kOE0aonpASRL1AB1QyWRHCxMtdTut9dJjSomRU6voV2ue0VkpLeYDSdRirHO2YBp-Sb3rAX-7wHbgcIn70eY5v4H6AMUOLv1-f4AsYwwD4LGXb9D7NIeFT33UQC4Jv18tyDh32325mCXcxDPgSBpvDMnjI3uEZ9H16jfY62yd487wfoR_nZ7ezy-rq68Xn2clV5cRU5arVoBjnUyEaKimZuqYsbSeVbJgUkmgpiGDWcQGdAz1tnKOMtZRo3nJBFD9Cn7a6y1UzQOtKidH2Zhn9YOPaBOvN3zejn5v78GBqLRlVdRH48CwQw88VpGzKkFxpwY4QVskwTqlmvGaioO__QRdhFcfSXqG4qBWrN4J8S7kYUorQ7YqhxDyZahZmY6p5MtWQEps-3v3Zx-7NbxcL8HELQJnmg4dokvMwOmh9LE6aNvj_fvALYLG0XA</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Hiramoto, Takafumi</creator><creator>Tahara, Maino</creator><creator>Liao, Jiyuan</creator><creator>Soda, Yasushi</creator><creator>Miura, Yoshie</creator><creator>Kurita, Ryo</creator><creator>Hamana, Hiroshi</creator><creator>Inoue, Kota</creator><creator>Kohara, Hiroshi</creator><creator>Miyamoto, Shohei</creator><creator>Hijikata, Yasuki</creator><creator>Okano, Shinji</creator><creator>Yamaguchi, Yoshiyuki</creator><creator>Oda, Yoshinao</creator><creator>Ichiyanagi, Kenji</creator><creator>Toh, Hidehiro</creator><creator>Sasaki, Hiroyuki</creator><creator>Kishi, Hiroyuki</creator><creator>Ryo, Akihide</creator><creator>Muraguchi, Atsushi</creator><creator>Takeda, Makoto</creator><creator>Tani, Kenzaburo</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene & Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200108</creationdate><title>Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells</title><author>Hiramoto, Takafumi ; Tahara, Maino ; Liao, Jiyuan ; Soda, Yasushi ; Miura, Yoshie ; Kurita, Ryo ; Hamana, Hiroshi ; Inoue, Kota ; Kohara, Hiroshi ; Miyamoto, Shohei ; Hijikata, Yasuki ; Okano, Shinji ; Yamaguchi, Yoshiyuki ; Oda, Yoshinao ; Ichiyanagi, Kenji ; Toh, Hidehiro ; Sasaki, Hiroyuki ; Kishi, Hiroyuki ; Ryo, Akihide ; Muraguchi, Atsushi ; Takeda, Makoto ; Tani, Kenzaburo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-d9e7233844b15108cb108df575b25450954042ac34efce98bcc122d1093d34073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Blood Donors</topic><topic>CD150 antigen</topic><topic>CD46 antigen</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cellular Reprogramming - genetics</topic><topic>Cloning</topic><topic>Efficiency</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Gene expression</topic><topic>Gene order</topic><topic>Gene therapy</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors</topic><topic>Genome editing</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Green fluorescent protein</topic><topic>HEK293 Cells</topic><topic>hematopoietic stem cell</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>iPSC</topic><topic>Kinases</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Measles</topic><topic>measles virus</topic><topic>Measles virus - genetics</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>naïve</topic><topic>non-integrating</topic><topic>non-transmissible</topic><topic>Original</topic><topic>Peripheral blood</topic><topic>Pluripotency</topic><topic>Progenitor cells</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA virus</topic><topic>RNA, Viral - genetics</topic><topic>segmented RNA genome</topic><topic>Sendai virus - genetics</topic><topic>Stem cells</topic><topic>T cell receptors</topic><topic>T-Lymphocytes - metabolism</topic><topic>Transduction, Genetic</topic><topic>Transgenes</topic><topic>vector</topic><topic>viral gene transfer vector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiramoto, Takafumi</creatorcontrib><creatorcontrib>Tahara, Maino</creatorcontrib><creatorcontrib>Liao, Jiyuan</creatorcontrib><creatorcontrib>Soda, Yasushi</creatorcontrib><creatorcontrib>Miura, Yoshie</creatorcontrib><creatorcontrib>Kurita, Ryo</creatorcontrib><creatorcontrib>Hamana, Hiroshi</creatorcontrib><creatorcontrib>Inoue, Kota</creatorcontrib><creatorcontrib>Kohara, Hiroshi</creatorcontrib><creatorcontrib>Miyamoto, Shohei</creatorcontrib><creatorcontrib>Hijikata, Yasuki</creatorcontrib><creatorcontrib>Okano, Shinji</creatorcontrib><creatorcontrib>Yamaguchi, Yoshiyuki</creatorcontrib><creatorcontrib>Oda, Yoshinao</creatorcontrib><creatorcontrib>Ichiyanagi, Kenji</creatorcontrib><creatorcontrib>Toh, Hidehiro</creatorcontrib><creatorcontrib>Sasaki, Hiroyuki</creatorcontrib><creatorcontrib>Kishi, Hiroyuki</creatorcontrib><creatorcontrib>Ryo, Akihide</creatorcontrib><creatorcontrib>Muraguchi, Atsushi</creatorcontrib><creatorcontrib>Takeda, Makoto</creatorcontrib><creatorcontrib>Tani, Kenzaburo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiramoto, Takafumi</au><au>Tahara, Maino</au><au>Liao, Jiyuan</au><au>Soda, Yasushi</au><au>Miura, Yoshie</au><au>Kurita, Ryo</au><au>Hamana, Hiroshi</au><au>Inoue, Kota</au><au>Kohara, Hiroshi</au><au>Miyamoto, Shohei</au><au>Hijikata, Yasuki</au><au>Okano, Shinji</au><au>Yamaguchi, Yoshiyuki</au><au>Oda, Yoshinao</au><au>Ichiyanagi, Kenji</au><au>Toh, Hidehiro</au><au>Sasaki, Hiroyuki</au><au>Kishi, Hiroyuki</au><au>Ryo, Akihide</au><au>Muraguchi, Atsushi</au><au>Takeda, Makoto</au><au>Tani, Kenzaburo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>129</spage><epage>141</epage><pages>129-141</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy.
This new non-transmissible and non-integrating measles virus vector, which can transfer multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors and induce primed or naive-like pluripotent stem cells from hematopoietic cells in the same condition, will definitely contribute to the gene and cell therapy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31677955</pmid><doi>10.1016/j.ymthe.2019.09.007</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2020-01, Vol.28 (1), p.129-141 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6952176 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Blood Donors CD150 antigen CD46 antigen Cell differentiation Cell Differentiation - genetics Cellular Reprogramming - genetics Cloning Efficiency Fibroblasts Fibroblasts - metabolism Gene expression Gene order Gene therapy Genetic Therapy - methods Genetic Vectors Genome editing Genome, Viral - genetics Genomes Green fluorescent protein HEK293 Cells hematopoietic stem cell Hematopoietic stem cells Hematopoietic Stem Cells - metabolism Heterografts Humans Induced Pluripotent Stem Cells - metabolism iPSC Kinases Lymphocytes Lymphocytes T Male Measles measles virus Measles virus - genetics Mice Mice, Inbred NOD naïve non-integrating non-transmissible Original Peripheral blood Pluripotency Progenitor cells Proteins Ribonucleic acid RNA RNA polymerase RNA virus RNA, Viral - genetics segmented RNA genome Sendai virus - genetics Stem cells T cell receptors T-Lymphocytes - metabolism Transduction, Genetic Transgenes vector viral gene transfer vector |
title | Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-transmissible%20MV%20Vector%20with%20Segmented%20RNA%20Genome%20Establishes%20Different%20Types%20of%20iPSCs%20from%20Hematopoietic%20Cells&rft.jtitle=Molecular%20therapy&rft.au=Hiramoto,%20Takafumi&rft.date=2020-01-08&rft.volume=28&rft.issue=1&rft.spage=129&rft.epage=141&rft.pages=129-141&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2019.09.007&rft_dat=%3Cproquest_pubme%3E2334672676%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334672676&rft_id=info:pmid/31677955&rft_els_id=S1525001619304101&rfr_iscdi=true |