Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk

In this study, Monte Carlo simulation and Bayesian network methods are combined to present a structure for assessing the aggregated impact of risks on the completion time of a construction project. Construction projects often encounter different risks which affect and prevent their desired completio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2019-12, Vol.16 (24), p.5024
Hauptverfasser: Namazian, Ali, Yakhchali, Siamak Haji, Yousefi, Vahidreza, Tamošaitienė, Jolanta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 5024
container_title International journal of environmental research and public health
container_volume 16
creator Namazian, Ali
Yakhchali, Siamak Haji
Yousefi, Vahidreza
Tamošaitienė, Jolanta
description In this study, Monte Carlo simulation and Bayesian network methods are combined to present a structure for assessing the aggregated impact of risks on the completion time of a construction project. Construction projects often encounter different risks which affect and prevent their desired completion at the predicted time and budget. The probability of construction project success is increased in the case of controlling influential risks. On the other hand, interactions among risks lead to the increase of aggregated impact of risks. This fact requires paying attention to assessment and management of project aggregated risk before and during the implementation phase. The developed structure of this article considers the interactions among risks to provide an indicator for estimating the effects of risks, so that the shortage of extant models including the lack of attention to estimate the aggregated impact caused by risks and the intensifying impacts can be evaluated. Moreover, the introduced structure is implemented in an industrial case study in order to validate the model, cover the functional aspect of the problem, and explain the procedure of structure implementation in detail.
doi_str_mv 10.3390/ijerph16245024
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6950629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336252043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-f76904c07b5c734cf8f7b0a78f3d7229396a3833d33ff4474f47d9fcf2d10b573</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS1EBXTLlWNliUsvSx2PYzuXSnTVLwkKaunZchyb9ZLYW0_Siv--oVAEPc1I85s38_QIOarYCUDD3saNL9t1JbmoGRc75KCSki2FZNXuk36fvETcMAZayGaP7EOloa65PiC4ykMbU0zX9Dyn0dOVLX2m3-Mw9XaMOVGbOvre3nqMNtGvfvydyw3Scz-uc4c05EJPET3incQstu3937WrOHiaA70seePdiHRKnS_0W8SbV-RFsD36w4e6ID8-frhafV6eXXz6sjo9WzpR6XEZlGyYcEy1tVMgXNBBtcwqHaBTnDfQSAsaoAMIQQglglBdE1zgXcXaWsGCvLvX3U7t4Dvn01hsb7YlDrbcmmyjeT5JcW2u8y8jm5rJ-cCCvHkQKPnn5HE0Q0Tn-94mnyc0HEDymjMBM3r8H7rJU0mzvZnijZRaKD1TJ_eUKxmx-PD4TMXMXZ7meZ7zwuunFh7xfwHCH2YHni4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329668478</pqid></control><display><type>article</type><title>Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Namazian, Ali ; Yakhchali, Siamak Haji ; Yousefi, Vahidreza ; Tamošaitienė, Jolanta</creator><creatorcontrib>Namazian, Ali ; Yakhchali, Siamak Haji ; Yousefi, Vahidreza ; Tamošaitienė, Jolanta</creatorcontrib><description>In this study, Monte Carlo simulation and Bayesian network methods are combined to present a structure for assessing the aggregated impact of risks on the completion time of a construction project. Construction projects often encounter different risks which affect and prevent their desired completion at the predicted time and budget. The probability of construction project success is increased in the case of controlling influential risks. On the other hand, interactions among risks lead to the increase of aggregated impact of risks. This fact requires paying attention to assessment and management of project aggregated risk before and during the implementation phase. The developed structure of this article considers the interactions among risks to provide an indicator for estimating the effects of risks, so that the shortage of extant models including the lack of attention to estimate the aggregated impact caused by risks and the intensifying impacts can be evaluated. Moreover, the introduced structure is implemented in an industrial case study in order to validate the model, cover the functional aspect of the problem, and explain the procedure of structure implementation in detail.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph16245024</identifier><identifier>PMID: 31835528</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bayes Theorem ; Bayesian analysis ; Completion time ; Computer Simulation ; Construction ; Construction industry ; Construction Industry - organization &amp; administration ; Delphi method ; Enterprise resource planning ; Fuzzy sets ; Humans ; Methods ; Monte Carlo Method ; Monte Carlo simulation ; Multiple criteria decision making ; Probability ; Project engineering ; Refineries ; Risk assessment ; Sensitivity analysis ; Time Factors</subject><ispartof>International journal of environmental research and public health, 2019-12, Vol.16 (24), p.5024</ispartof><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-f76904c07b5c734cf8f7b0a78f3d7229396a3833d33ff4474f47d9fcf2d10b573</citedby><cites>FETCH-LOGICAL-c418t-f76904c07b5c734cf8f7b0a78f3d7229396a3833d33ff4474f47d9fcf2d10b573</cites><orcidid>0000-0001-5957-0620 ; 0000-0003-4692-6821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950629/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950629/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31835528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Namazian, Ali</creatorcontrib><creatorcontrib>Yakhchali, Siamak Haji</creatorcontrib><creatorcontrib>Yousefi, Vahidreza</creatorcontrib><creatorcontrib>Tamošaitienė, Jolanta</creatorcontrib><title>Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>In this study, Monte Carlo simulation and Bayesian network methods are combined to present a structure for assessing the aggregated impact of risks on the completion time of a construction project. Construction projects often encounter different risks which affect and prevent their desired completion at the predicted time and budget. The probability of construction project success is increased in the case of controlling influential risks. On the other hand, interactions among risks lead to the increase of aggregated impact of risks. This fact requires paying attention to assessment and management of project aggregated risk before and during the implementation phase. The developed structure of this article considers the interactions among risks to provide an indicator for estimating the effects of risks, so that the shortage of extant models including the lack of attention to estimate the aggregated impact caused by risks and the intensifying impacts can be evaluated. Moreover, the introduced structure is implemented in an industrial case study in order to validate the model, cover the functional aspect of the problem, and explain the procedure of structure implementation in detail.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Completion time</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Construction industry</subject><subject>Construction Industry - organization &amp; administration</subject><subject>Delphi method</subject><subject>Enterprise resource planning</subject><subject>Fuzzy sets</subject><subject>Humans</subject><subject>Methods</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Multiple criteria decision making</subject><subject>Probability</subject><subject>Project engineering</subject><subject>Refineries</subject><subject>Risk assessment</subject><subject>Sensitivity analysis</subject><subject>Time Factors</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1P3DAQxS1EBXTLlWNliUsvSx2PYzuXSnTVLwkKaunZchyb9ZLYW0_Siv--oVAEPc1I85s38_QIOarYCUDD3saNL9t1JbmoGRc75KCSki2FZNXuk36fvETcMAZayGaP7EOloa65PiC4ykMbU0zX9Dyn0dOVLX2m3-Mw9XaMOVGbOvre3nqMNtGvfvydyw3Scz-uc4c05EJPET3incQstu3937WrOHiaA70seePdiHRKnS_0W8SbV-RFsD36w4e6ID8-frhafV6eXXz6sjo9WzpR6XEZlGyYcEy1tVMgXNBBtcwqHaBTnDfQSAsaoAMIQQglglBdE1zgXcXaWsGCvLvX3U7t4Dvn01hsb7YlDrbcmmyjeT5JcW2u8y8jm5rJ-cCCvHkQKPnn5HE0Q0Tn-94mnyc0HEDymjMBM3r8H7rJU0mzvZnijZRaKD1TJ_eUKxmx-PD4TMXMXZ7meZ7zwuunFh7xfwHCH2YHni4</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Namazian, Ali</creator><creator>Yakhchali, Siamak Haji</creator><creator>Yousefi, Vahidreza</creator><creator>Tamošaitienė, Jolanta</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5957-0620</orcidid><orcidid>https://orcid.org/0000-0003-4692-6821</orcidid></search><sort><creationdate>20191210</creationdate><title>Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk</title><author>Namazian, Ali ; Yakhchali, Siamak Haji ; Yousefi, Vahidreza ; Tamošaitienė, Jolanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-f76904c07b5c734cf8f7b0a78f3d7229396a3833d33ff4474f47d9fcf2d10b573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Completion time</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Construction industry</topic><topic>Construction Industry - organization &amp; administration</topic><topic>Delphi method</topic><topic>Enterprise resource planning</topic><topic>Fuzzy sets</topic><topic>Humans</topic><topic>Methods</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Multiple criteria decision making</topic><topic>Probability</topic><topic>Project engineering</topic><topic>Refineries</topic><topic>Risk assessment</topic><topic>Sensitivity analysis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namazian, Ali</creatorcontrib><creatorcontrib>Yakhchali, Siamak Haji</creatorcontrib><creatorcontrib>Yousefi, Vahidreza</creatorcontrib><creatorcontrib>Tamošaitienė, Jolanta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namazian, Ali</au><au>Yakhchali, Siamak Haji</au><au>Yousefi, Vahidreza</au><au>Tamošaitienė, Jolanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>16</volume><issue>24</issue><spage>5024</spage><pages>5024-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>In this study, Monte Carlo simulation and Bayesian network methods are combined to present a structure for assessing the aggregated impact of risks on the completion time of a construction project. Construction projects often encounter different risks which affect and prevent their desired completion at the predicted time and budget. The probability of construction project success is increased in the case of controlling influential risks. On the other hand, interactions among risks lead to the increase of aggregated impact of risks. This fact requires paying attention to assessment and management of project aggregated risk before and during the implementation phase. The developed structure of this article considers the interactions among risks to provide an indicator for estimating the effects of risks, so that the shortage of extant models including the lack of attention to estimate the aggregated impact caused by risks and the intensifying impacts can be evaluated. Moreover, the introduced structure is implemented in an industrial case study in order to validate the model, cover the functional aspect of the problem, and explain the procedure of structure implementation in detail.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31835528</pmid><doi>10.3390/ijerph16245024</doi><orcidid>https://orcid.org/0000-0001-5957-0620</orcidid><orcidid>https://orcid.org/0000-0003-4692-6821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2019-12, Vol.16 (24), p.5024
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6950629
source MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bayes Theorem
Bayesian analysis
Completion time
Computer Simulation
Construction
Construction industry
Construction Industry - organization & administration
Delphi method
Enterprise resource planning
Fuzzy sets
Humans
Methods
Monte Carlo Method
Monte Carlo simulation
Multiple criteria decision making
Probability
Project engineering
Refineries
Risk assessment
Sensitivity analysis
Time Factors
title Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Monte%20Carlo%20Simulation%20and%20Bayesian%20Networks%20Methods%20for%20Assessing%20Completion%20Time%20of%20Projects%20under%20Risk&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Namazian,%20Ali&rft.date=2019-12-10&rft.volume=16&rft.issue=24&rft.spage=5024&rft.pages=5024-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph16245024&rft_dat=%3Cproquest_pubme%3E2336252043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329668478&rft_id=info:pmid/31835528&rfr_iscdi=true