Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images

Retinal detachment can lead to severe visual loss if not treated timely. The early diagnosis of retinal detachment can improve the rate of successful reattachment and the visual results, especially before macular involvement. Manual retinal detachment screening is time-consuming and labour-intensive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-01, Vol.3 (1), p.15-15, Article 15
Hauptverfasser: Li, Zhongwen, Guo, Chong, Nie, Danyao, Lin, Duoru, Zhu, Yi, Chen, Chuan, Wu, Xiaohang, Xu, Fabao, Jin, Chenjin, Zhang, Xiayin, Xiao, Hui, Zhang, Kai, Zhao, Lanqin, Yan, Pisong, Lai, Weiyi, Li, Jianyin, Feng, Weibo, Li, Yonghao, Wei Ting, Daniel Shu, Lin, Haotian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 15
container_title Communications biology
container_volume 3
creator Li, Zhongwen
Guo, Chong
Nie, Danyao
Lin, Duoru
Zhu, Yi
Chen, Chuan
Wu, Xiaohang
Xu, Fabao
Jin, Chenjin
Zhang, Xiayin
Xiao, Hui
Zhang, Kai
Zhao, Lanqin
Yan, Pisong
Lai, Weiyi
Li, Jianyin
Feng, Weibo
Li, Yonghao
Wei Ting, Daniel Shu
Lin, Haotian
description Retinal detachment can lead to severe visual loss if not treated timely. The early diagnosis of retinal detachment can improve the rate of successful reattachment and the visual results, especially before macular involvement. Manual retinal detachment screening is time-consuming and labour-intensive, which is difficult for large-scale clinical applications. In this study, we developed a cascaded deep learning system based on the ultra-widefield fundus images for automated retinal detachment detection and macula-on/off retinal detachment discerning. The performance of this system is reliable and comparable to an experienced ophthalmologist. In addition, this system can automatically provide guidance to patients regarding appropriate preoperative posturing to reduce retinal detachment progression and the urgency of retinal detachment repair. The implementation of this system on a global scale may drastically reduce the extent of vision impairment resulting from retinal detachment by providing timely identification and referral. Li et al. develop a cascaded deep learning system for automated retinal detachment and macular status detection based on ultra-widefield fundus (UWF) images. With reliable and comparable performance to an experienced opthamologist, this system can also provide guidance to patients regarding appropriate preoperative posturing to reduce RD progression.
doi_str_mv 10.1038/s42003-019-0730-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6949241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377661684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-616085bcc3eee86b8babeadfce102e7e754b6fe4bd7ac2e46c1cae4b25f0f01b3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EolXpA7BBkdiwSeu_OPEGqWqhIFViA2trYo9vUznJxY7b8vY4SimlEit7Zr45nvEh5C2jJ4yK7jRJTqmoKdM1bQWt71-QQy60roWS_OWT-wE5TumG0kJqrYR8TQ4E07wRrDkk-wvEfRUQ4jRMu8rPsXK4oF3WKGI5IKwZsNcjTksFk6vckCxu_Ag2B4hVWmDJqcppTeawRKjvBod-wOAqnydXisMIO0xvyCsPIeHxw3lEfnz-9P38S3317fLr-dlVbWVLl1oxRbumt1YgYqf6rocewXmLjHJssW1krzzK3rVgOUplmYUS8sZTT1kvjsjHTXef-xGdLcNHCGYfyxjxl5lhMP9WpuHa7OZbo7TUXLIi8OFBIM4_M6bFjOveIcCEc06GC6F4ozXTBX3_DL2Zcyw_t1Jtq8oynSwU2ygb55Qi-sdhGDWrpWaz1BSjzGqpuS89755u8djxx8AC8A1IpTTtMP59-v-qvwGln7DV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377661684</pqid></control><display><type>article</type><title>Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Li, Zhongwen ; Guo, Chong ; Nie, Danyao ; Lin, Duoru ; Zhu, Yi ; Chen, Chuan ; Wu, Xiaohang ; Xu, Fabao ; Jin, Chenjin ; Zhang, Xiayin ; Xiao, Hui ; Zhang, Kai ; Zhao, Lanqin ; Yan, Pisong ; Lai, Weiyi ; Li, Jianyin ; Feng, Weibo ; Li, Yonghao ; Wei Ting, Daniel Shu ; Lin, Haotian</creator><creatorcontrib>Li, Zhongwen ; Guo, Chong ; Nie, Danyao ; Lin, Duoru ; Zhu, Yi ; Chen, Chuan ; Wu, Xiaohang ; Xu, Fabao ; Jin, Chenjin ; Zhang, Xiayin ; Xiao, Hui ; Zhang, Kai ; Zhao, Lanqin ; Yan, Pisong ; Lai, Weiyi ; Li, Jianyin ; Feng, Weibo ; Li, Yonghao ; Wei Ting, Daniel Shu ; Lin, Haotian</creatorcontrib><description>Retinal detachment can lead to severe visual loss if not treated timely. The early diagnosis of retinal detachment can improve the rate of successful reattachment and the visual results, especially before macular involvement. Manual retinal detachment screening is time-consuming and labour-intensive, which is difficult for large-scale clinical applications. In this study, we developed a cascaded deep learning system based on the ultra-widefield fundus images for automated retinal detachment detection and macula-on/off retinal detachment discerning. The performance of this system is reliable and comparable to an experienced ophthalmologist. In addition, this system can automatically provide guidance to patients regarding appropriate preoperative posturing to reduce retinal detachment progression and the urgency of retinal detachment repair. The implementation of this system on a global scale may drastically reduce the extent of vision impairment resulting from retinal detachment by providing timely identification and referral. Li et al. develop a cascaded deep learning system for automated retinal detachment and macular status detection based on ultra-widefield fundus (UWF) images. With reliable and comparable performance to an experienced opthamologist, this system can also provide guidance to patients regarding appropriate preoperative posturing to reduce RD progression.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-019-0730-x</identifier><identifier>PMID: 31925315</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308 ; 692/308/575 ; 692/699/3161/3175 ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Automation ; Biology ; Biomedical and Life Sciences ; Child ; Deep Learning ; Diagnostic Imaging - methods ; Female ; Humans ; Life Sciences ; Macula Lutea - diagnostic imaging ; Macula Lutea - pathology ; Male ; Middle Aged ; Reproducibility of Results ; Retina ; Retinal Detachment - diagnostic imaging ; Retinal Detachment - pathology ; ROC Curve ; Sensitivity and Specificity ; Therapeutic applications ; Workflow ; Young Adult</subject><ispartof>Communications biology, 2020-01, Vol.3 (1), p.15-15, Article 15</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-616085bcc3eee86b8babeadfce102e7e754b6fe4bd7ac2e46c1cae4b25f0f01b3</citedby><cites>FETCH-LOGICAL-c470t-616085bcc3eee86b8babeadfce102e7e754b6fe4bd7ac2e46c1cae4b25f0f01b3</cites><orcidid>0000-0003-4672-9721 ; 0000-0001-5701-0857 ; 0000-0001-9054-288X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949241/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949241/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31925315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhongwen</creatorcontrib><creatorcontrib>Guo, Chong</creatorcontrib><creatorcontrib>Nie, Danyao</creatorcontrib><creatorcontrib>Lin, Duoru</creatorcontrib><creatorcontrib>Zhu, Yi</creatorcontrib><creatorcontrib>Chen, Chuan</creatorcontrib><creatorcontrib>Wu, Xiaohang</creatorcontrib><creatorcontrib>Xu, Fabao</creatorcontrib><creatorcontrib>Jin, Chenjin</creatorcontrib><creatorcontrib>Zhang, Xiayin</creatorcontrib><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhao, Lanqin</creatorcontrib><creatorcontrib>Yan, Pisong</creatorcontrib><creatorcontrib>Lai, Weiyi</creatorcontrib><creatorcontrib>Li, Jianyin</creatorcontrib><creatorcontrib>Feng, Weibo</creatorcontrib><creatorcontrib>Li, Yonghao</creatorcontrib><creatorcontrib>Wei Ting, Daniel Shu</creatorcontrib><creatorcontrib>Lin, Haotian</creatorcontrib><title>Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Retinal detachment can lead to severe visual loss if not treated timely. The early diagnosis of retinal detachment can improve the rate of successful reattachment and the visual results, especially before macular involvement. Manual retinal detachment screening is time-consuming and labour-intensive, which is difficult for large-scale clinical applications. In this study, we developed a cascaded deep learning system based on the ultra-widefield fundus images for automated retinal detachment detection and macula-on/off retinal detachment discerning. The performance of this system is reliable and comparable to an experienced ophthalmologist. In addition, this system can automatically provide guidance to patients regarding appropriate preoperative posturing to reduce retinal detachment progression and the urgency of retinal detachment repair. The implementation of this system on a global scale may drastically reduce the extent of vision impairment resulting from retinal detachment by providing timely identification and referral. Li et al. develop a cascaded deep learning system for automated retinal detachment and macular status detection based on ultra-widefield fundus (UWF) images. With reliable and comparable performance to an experienced opthamologist, this system can also provide guidance to patients regarding appropriate preoperative posturing to reduce RD progression.</description><subject>692/308</subject><subject>692/308/575</subject><subject>692/699/3161/3175</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Automation</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Child</subject><subject>Deep Learning</subject><subject>Diagnostic Imaging - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Macula Lutea - diagnostic imaging</subject><subject>Macula Lutea - pathology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Reproducibility of Results</subject><subject>Retina</subject><subject>Retinal Detachment - diagnostic imaging</subject><subject>Retinal Detachment - pathology</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Therapeutic applications</subject><subject>Workflow</subject><subject>Young Adult</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1TAQhS0EolXpA7BBkdiwSeu_OPEGqWqhIFViA2trYo9vUznJxY7b8vY4SimlEit7Zr45nvEh5C2jJ4yK7jRJTqmoKdM1bQWt71-QQy60roWS_OWT-wE5TumG0kJqrYR8TQ4E07wRrDkk-wvEfRUQ4jRMu8rPsXK4oF3WKGI5IKwZsNcjTksFk6vckCxu_Ag2B4hVWmDJqcppTeawRKjvBod-wOAqnydXisMIO0xvyCsPIeHxw3lEfnz-9P38S3317fLr-dlVbWVLl1oxRbumt1YgYqf6rocewXmLjHJssW1krzzK3rVgOUplmYUS8sZTT1kvjsjHTXef-xGdLcNHCGYfyxjxl5lhMP9WpuHa7OZbo7TUXLIi8OFBIM4_M6bFjOveIcCEc06GC6F4ozXTBX3_DL2Zcyw_t1Jtq8oynSwU2ygb55Qi-sdhGDWrpWaz1BSjzGqpuS89755u8djxx8AC8A1IpTTtMP59-v-qvwGln7DV</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Li, Zhongwen</creator><creator>Guo, Chong</creator><creator>Nie, Danyao</creator><creator>Lin, Duoru</creator><creator>Zhu, Yi</creator><creator>Chen, Chuan</creator><creator>Wu, Xiaohang</creator><creator>Xu, Fabao</creator><creator>Jin, Chenjin</creator><creator>Zhang, Xiayin</creator><creator>Xiao, Hui</creator><creator>Zhang, Kai</creator><creator>Zhao, Lanqin</creator><creator>Yan, Pisong</creator><creator>Lai, Weiyi</creator><creator>Li, Jianyin</creator><creator>Feng, Weibo</creator><creator>Li, Yonghao</creator><creator>Wei Ting, Daniel Shu</creator><creator>Lin, Haotian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4672-9721</orcidid><orcidid>https://orcid.org/0000-0001-5701-0857</orcidid><orcidid>https://orcid.org/0000-0001-9054-288X</orcidid></search><sort><creationdate>20200108</creationdate><title>Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images</title><author>Li, Zhongwen ; Guo, Chong ; Nie, Danyao ; Lin, Duoru ; Zhu, Yi ; Chen, Chuan ; Wu, Xiaohang ; Xu, Fabao ; Jin, Chenjin ; Zhang, Xiayin ; Xiao, Hui ; Zhang, Kai ; Zhao, Lanqin ; Yan, Pisong ; Lai, Weiyi ; Li, Jianyin ; Feng, Weibo ; Li, Yonghao ; Wei Ting, Daniel Shu ; Lin, Haotian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-616085bcc3eee86b8babeadfce102e7e754b6fe4bd7ac2e46c1cae4b25f0f01b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/308</topic><topic>692/308/575</topic><topic>692/699/3161/3175</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Automation</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Child</topic><topic>Deep Learning</topic><topic>Diagnostic Imaging - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Macula Lutea - diagnostic imaging</topic><topic>Macula Lutea - pathology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Reproducibility of Results</topic><topic>Retina</topic><topic>Retinal Detachment - diagnostic imaging</topic><topic>Retinal Detachment - pathology</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Therapeutic applications</topic><topic>Workflow</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhongwen</creatorcontrib><creatorcontrib>Guo, Chong</creatorcontrib><creatorcontrib>Nie, Danyao</creatorcontrib><creatorcontrib>Lin, Duoru</creatorcontrib><creatorcontrib>Zhu, Yi</creatorcontrib><creatorcontrib>Chen, Chuan</creatorcontrib><creatorcontrib>Wu, Xiaohang</creatorcontrib><creatorcontrib>Xu, Fabao</creatorcontrib><creatorcontrib>Jin, Chenjin</creatorcontrib><creatorcontrib>Zhang, Xiayin</creatorcontrib><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhao, Lanqin</creatorcontrib><creatorcontrib>Yan, Pisong</creatorcontrib><creatorcontrib>Lai, Weiyi</creatorcontrib><creatorcontrib>Li, Jianyin</creatorcontrib><creatorcontrib>Feng, Weibo</creatorcontrib><creatorcontrib>Li, Yonghao</creatorcontrib><creatorcontrib>Wei Ting, Daniel Shu</creatorcontrib><creatorcontrib>Lin, Haotian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhongwen</au><au>Guo, Chong</au><au>Nie, Danyao</au><au>Lin, Duoru</au><au>Zhu, Yi</au><au>Chen, Chuan</au><au>Wu, Xiaohang</au><au>Xu, Fabao</au><au>Jin, Chenjin</au><au>Zhang, Xiayin</au><au>Xiao, Hui</au><au>Zhang, Kai</au><au>Zhao, Lanqin</au><au>Yan, Pisong</au><au>Lai, Weiyi</au><au>Li, Jianyin</au><au>Feng, Weibo</au><au>Li, Yonghao</au><au>Wei Ting, Daniel Shu</au><au>Lin, Haotian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>15</spage><epage>15</epage><pages>15-15</pages><artnum>15</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Retinal detachment can lead to severe visual loss if not treated timely. The early diagnosis of retinal detachment can improve the rate of successful reattachment and the visual results, especially before macular involvement. Manual retinal detachment screening is time-consuming and labour-intensive, which is difficult for large-scale clinical applications. In this study, we developed a cascaded deep learning system based on the ultra-widefield fundus images for automated retinal detachment detection and macula-on/off retinal detachment discerning. The performance of this system is reliable and comparable to an experienced ophthalmologist. In addition, this system can automatically provide guidance to patients regarding appropriate preoperative posturing to reduce retinal detachment progression and the urgency of retinal detachment repair. The implementation of this system on a global scale may drastically reduce the extent of vision impairment resulting from retinal detachment by providing timely identification and referral. Li et al. develop a cascaded deep learning system for automated retinal detachment and macular status detection based on ultra-widefield fundus (UWF) images. With reliable and comparable performance to an experienced opthamologist, this system can also provide guidance to patients regarding appropriate preoperative posturing to reduce RD progression.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31925315</pmid><doi>10.1038/s42003-019-0730-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4672-9721</orcidid><orcidid>https://orcid.org/0000-0001-5701-0857</orcidid><orcidid>https://orcid.org/0000-0001-9054-288X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-01, Vol.3 (1), p.15-15, Article 15
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6949241
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access; Springer Nature OA Free Journals
subjects 692/308
692/308/575
692/699/3161/3175
Adolescent
Adult
Aged
Aged, 80 and over
Automation
Biology
Biomedical and Life Sciences
Child
Deep Learning
Diagnostic Imaging - methods
Female
Humans
Life Sciences
Macula Lutea - diagnostic imaging
Macula Lutea - pathology
Male
Middle Aged
Reproducibility of Results
Retina
Retinal Detachment - diagnostic imaging
Retinal Detachment - pathology
ROC Curve
Sensitivity and Specificity
Therapeutic applications
Workflow
Young Adult
title Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20detecting%20retinal%20detachment%20and%20discerning%20macular%20status%20using%20ultra-widefield%20fundus%20images&rft.jtitle=Communications%20biology&rft.au=Li,%20Zhongwen&rft.date=2020-01-08&rft.volume=3&rft.issue=1&rft.spage=15&rft.epage=15&rft.pages=15-15&rft.artnum=15&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-019-0730-x&rft_dat=%3Cproquest_pubme%3E2377661684%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377661684&rft_id=info:pmid/31925315&rfr_iscdi=true