Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb

Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2019-12, Vol.51 (6), p.1012-1027.e7
Hauptverfasser: Shi, Hao, Chapman, Nicole M., Wen, Jing, Guy, Cliff, Long, Lingyun, Dhungana, Yogesh, Rankin, Sherri, Pelletier, Stephane, Vogel, Peter, Wang, Hong, Peng, Junmin, Guan, Kun-Liang, Chi, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1027.e7
container_issue 6
container_start_page 1012
container_title Immunity (Cambridge, Mass.)
container_volume 51
creator Shi, Hao
Chapman, Nicole M.
Wen, Jing
Guy, Cliff
Long, Lingyun
Dhungana, Yogesh
Rankin, Sherri
Pelletier, Stephane
Vogel, Peter
Wang, Hong
Peng, Junmin
Guan, Kun-Liang
Chi, Hongbo
description Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell function by priming and sustaining TCR-induced mTORC1 activity. mTORC1 activation was induced by amino acids, especially arginine and leucine, accompanied by the dynamic lysosomal localization of the mTOR and Tsc complexes. Rag and Rheb GTPases were central regulators of amino acid-dependent mTORC1 activation in effector Treg (eTreg) cells. Mice bearing RagA-RagB- or Rheb1-Rheb2-deficient Treg cells developed a fatal autoimmune disease and had reduced eTreg cell accumulation and function. RagA-RagB regulated mitochondrial and lysosomal fitness, while Rheb1-Rheb2 enforced eTreg cell suppressive gene signature. Together, these findings reveal a crucial requirement of amino acid signaling for licensing and sustaining mTORC1 activation and functional programming of Treg cells. [Display omitted] •Amino acids license mTORC1 activation downstream of TCR and costimulatory signals•Arginine and leucine sustain mTORC1 activity in activated Treg cells•RagA-RagB drive eTreg cell accumulation and function through metabolic regulation•Rheb1-Rheb2 promote cell cycle and suppressive gene signature of eTreg cells Shi et al. show that nutrient signals from amino acids, especially arginine and leucine, are integrated by the small G proteins Rag and Rheb to orchestrate Treg cell activation and function. These data establish a crucial role for amino acid signaling in Treg cell-mediated immune suppression.
doi_str_mv 10.1016/j.immuni.2019.10.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6948188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761319304182</els_id><sourcerecordid>2327892130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-3ee4f110a30d13454e9d51a571353b798f2816eef1ebafcf1126772da6f673b3</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi0EoiXwBghZ4sJlg2fttXcvSFFEC2qkVmnultc7mzrK2sXejdS3xyGlUA6cxpr5Zjz__IS8BzYHBvLzbu6GYfJuXjJocmrOGLwg58AaVQio2cvjW4lCSeBn5E1KuwyIqmGvyRkHKWsp4JzYxeB8oAvrukRXzqJPSK-cNzkMm-v1EnJtdAc3PlDjO7qJuKVL3O_pxeRzIXh6cIbeDianLulNDCM6n-jabH_x6zts35JXvdknfPcYZ2Rz8XWz_Fasri-_LxerwooGxoIjih6AGc464KIS2HQVmEoBr3irmrova5CIPWBrepvRUipVdkb2UvGWz8iX09j7qR2wy1LGaPb6PrrBxAcdjNPPK97d6W04aNmIGuo6D_j0OCCGHxOmUQ8u2azVeAxT0iXPBy05y-vMyMd_0F2Yos_qMlWquikhczMiTpSNIaWI_dMywPTRRL3TJxP10cRjNnuU2z78LeSp6bdrf5RivubBYdTJOvQWOxfRjroL7v8__AQro649</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327892130</pqid></control><display><type>article</type><title>Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shi, Hao ; Chapman, Nicole M. ; Wen, Jing ; Guy, Cliff ; Long, Lingyun ; Dhungana, Yogesh ; Rankin, Sherri ; Pelletier, Stephane ; Vogel, Peter ; Wang, Hong ; Peng, Junmin ; Guan, Kun-Liang ; Chi, Hongbo</creator><creatorcontrib>Shi, Hao ; Chapman, Nicole M. ; Wen, Jing ; Guy, Cliff ; Long, Lingyun ; Dhungana, Yogesh ; Rankin, Sherri ; Pelletier, Stephane ; Vogel, Peter ; Wang, Hong ; Peng, Junmin ; Guan, Kun-Liang ; Chi, Hongbo</creatorcontrib><description>Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell function by priming and sustaining TCR-induced mTORC1 activity. mTORC1 activation was induced by amino acids, especially arginine and leucine, accompanied by the dynamic lysosomal localization of the mTOR and Tsc complexes. Rag and Rheb GTPases were central regulators of amino acid-dependent mTORC1 activation in effector Treg (eTreg) cells. Mice bearing RagA-RagB- or Rheb1-Rheb2-deficient Treg cells developed a fatal autoimmune disease and had reduced eTreg cell accumulation and function. RagA-RagB regulated mitochondrial and lysosomal fitness, while Rheb1-Rheb2 enforced eTreg cell suppressive gene signature. Together, these findings reveal a crucial requirement of amino acid signaling for licensing and sustaining mTORC1 activation and functional programming of Treg cells. [Display omitted] •Amino acids license mTORC1 activation downstream of TCR and costimulatory signals•Arginine and leucine sustain mTORC1 activity in activated Treg cells•RagA-RagB drive eTreg cell accumulation and function through metabolic regulation•Rheb1-Rheb2 promote cell cycle and suppressive gene signature of eTreg cells Shi et al. show that nutrient signals from amino acids, especially arginine and leucine, are integrated by the small G proteins Rag and Rheb to orchestrate Treg cell activation and function. These data establish a crucial role for amino acid signaling in Treg cell-mediated immune suppression.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2019.10.001</identifier><identifier>PMID: 31668641</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activation ; Amino acids ; Animals ; Arginine ; Arginine - metabolism ; Autoimmune diseases ; autoimmunity ; Cell Cycle ; Cell Differentiation - physiology ; Cell Line ; Effector cells ; eTreg cells ; Functional programming ; Gene expression ; Homeostasis ; Humans ; Immune Tolerance - immunology ; Immunological tolerance ; Kinases ; Leucine ; Leucine - metabolism ; Localization ; Lymphocyte Activation - immunology ; Lymphocytes ; Lymphocytes T ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; mTOR ; Priming ; Proteins ; RagA ; RagB ; Ras Homolog Enriched in Brain Protein - genetics ; Ras Homolog Enriched in Brain Protein - metabolism ; Receptors, Antigen, T-Cell - immunology ; Regulators ; Rheb ; Sensors ; Signaling ; T cell receptors ; T-Lymphocytes, Regulatory - cytology ; T-Lymphocytes, Regulatory - immunology ; TOR protein ; Treg cells</subject><ispartof>Immunity (Cambridge, Mass.), 2019-12, Vol.51 (6), p.1012-1027.e7</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-3ee4f110a30d13454e9d51a571353b798f2816eef1ebafcf1126772da6f673b3</citedby><cites>FETCH-LOGICAL-c491t-3ee4f110a30d13454e9d51a571353b798f2816eef1ebafcf1126772da6f673b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761319304182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31668641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Chapman, Nicole M.</creatorcontrib><creatorcontrib>Wen, Jing</creatorcontrib><creatorcontrib>Guy, Cliff</creatorcontrib><creatorcontrib>Long, Lingyun</creatorcontrib><creatorcontrib>Dhungana, Yogesh</creatorcontrib><creatorcontrib>Rankin, Sherri</creatorcontrib><creatorcontrib>Pelletier, Stephane</creatorcontrib><creatorcontrib>Vogel, Peter</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Peng, Junmin</creatorcontrib><creatorcontrib>Guan, Kun-Liang</creatorcontrib><creatorcontrib>Chi, Hongbo</creatorcontrib><title>Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell function by priming and sustaining TCR-induced mTORC1 activity. mTORC1 activation was induced by amino acids, especially arginine and leucine, accompanied by the dynamic lysosomal localization of the mTOR and Tsc complexes. Rag and Rheb GTPases were central regulators of amino acid-dependent mTORC1 activation in effector Treg (eTreg) cells. Mice bearing RagA-RagB- or Rheb1-Rheb2-deficient Treg cells developed a fatal autoimmune disease and had reduced eTreg cell accumulation and function. RagA-RagB regulated mitochondrial and lysosomal fitness, while Rheb1-Rheb2 enforced eTreg cell suppressive gene signature. Together, these findings reveal a crucial requirement of amino acid signaling for licensing and sustaining mTORC1 activation and functional programming of Treg cells. [Display omitted] •Amino acids license mTORC1 activation downstream of TCR and costimulatory signals•Arginine and leucine sustain mTORC1 activity in activated Treg cells•RagA-RagB drive eTreg cell accumulation and function through metabolic regulation•Rheb1-Rheb2 promote cell cycle and suppressive gene signature of eTreg cells Shi et al. show that nutrient signals from amino acids, especially arginine and leucine, are integrated by the small G proteins Rag and Rheb to orchestrate Treg cell activation and function. These data establish a crucial role for amino acid signaling in Treg cell-mediated immune suppression.</description><subject>Activation</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Arginine</subject><subject>Arginine - metabolism</subject><subject>Autoimmune diseases</subject><subject>autoimmunity</subject><subject>Cell Cycle</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Effector cells</subject><subject>eTreg cells</subject><subject>Functional programming</subject><subject>Gene expression</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immune Tolerance - immunology</subject><subject>Immunological tolerance</subject><subject>Kinases</subject><subject>Leucine</subject><subject>Leucine - metabolism</subject><subject>Localization</subject><subject>Lymphocyte Activation - immunology</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>mTOR</subject><subject>Priming</subject><subject>Proteins</subject><subject>RagA</subject><subject>RagB</subject><subject>Ras Homolog Enriched in Brain Protein - genetics</subject><subject>Ras Homolog Enriched in Brain Protein - metabolism</subject><subject>Receptors, Antigen, T-Cell - immunology</subject><subject>Regulators</subject><subject>Rheb</subject><subject>Sensors</subject><subject>Signaling</subject><subject>T cell receptors</subject><subject>T-Lymphocytes, Regulatory - cytology</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>TOR protein</subject><subject>Treg cells</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFuEzEQhi0EoiXwBghZ4sJlg2fttXcvSFFEC2qkVmnultc7mzrK2sXejdS3xyGlUA6cxpr5Zjz__IS8BzYHBvLzbu6GYfJuXjJocmrOGLwg58AaVQio2cvjW4lCSeBn5E1KuwyIqmGvyRkHKWsp4JzYxeB8oAvrukRXzqJPSK-cNzkMm-v1EnJtdAc3PlDjO7qJuKVL3O_pxeRzIXh6cIbeDianLulNDCM6n-jabH_x6zts35JXvdknfPcYZ2Rz8XWz_Fasri-_LxerwooGxoIjih6AGc464KIS2HQVmEoBr3irmrova5CIPWBrepvRUipVdkb2UvGWz8iX09j7qR2wy1LGaPb6PrrBxAcdjNPPK97d6W04aNmIGuo6D_j0OCCGHxOmUQ8u2azVeAxT0iXPBy05y-vMyMd_0F2Yos_qMlWquikhczMiTpSNIaWI_dMywPTRRL3TJxP10cRjNnuU2z78LeSp6bdrf5RivubBYdTJOvQWOxfRjroL7v8__AQro649</recordid><startdate>20191217</startdate><enddate>20191217</enddate><creator>Shi, Hao</creator><creator>Chapman, Nicole M.</creator><creator>Wen, Jing</creator><creator>Guy, Cliff</creator><creator>Long, Lingyun</creator><creator>Dhungana, Yogesh</creator><creator>Rankin, Sherri</creator><creator>Pelletier, Stephane</creator><creator>Vogel, Peter</creator><creator>Wang, Hong</creator><creator>Peng, Junmin</creator><creator>Guan, Kun-Liang</creator><creator>Chi, Hongbo</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191217</creationdate><title>Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb</title><author>Shi, Hao ; Chapman, Nicole M. ; Wen, Jing ; Guy, Cliff ; Long, Lingyun ; Dhungana, Yogesh ; Rankin, Sherri ; Pelletier, Stephane ; Vogel, Peter ; Wang, Hong ; Peng, Junmin ; Guan, Kun-Liang ; Chi, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-3ee4f110a30d13454e9d51a571353b798f2816eef1ebafcf1126772da6f673b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Arginine</topic><topic>Arginine - metabolism</topic><topic>Autoimmune diseases</topic><topic>autoimmunity</topic><topic>Cell Cycle</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Effector cells</topic><topic>eTreg cells</topic><topic>Functional programming</topic><topic>Gene expression</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immune Tolerance - immunology</topic><topic>Immunological tolerance</topic><topic>Kinases</topic><topic>Leucine</topic><topic>Leucine - metabolism</topic><topic>Localization</topic><topic>Lymphocyte Activation - immunology</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>mTOR</topic><topic>Priming</topic><topic>Proteins</topic><topic>RagA</topic><topic>RagB</topic><topic>Ras Homolog Enriched in Brain Protein - genetics</topic><topic>Ras Homolog Enriched in Brain Protein - metabolism</topic><topic>Receptors, Antigen, T-Cell - immunology</topic><topic>Regulators</topic><topic>Rheb</topic><topic>Sensors</topic><topic>Signaling</topic><topic>T cell receptors</topic><topic>T-Lymphocytes, Regulatory - cytology</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>TOR protein</topic><topic>Treg cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Chapman, Nicole M.</creatorcontrib><creatorcontrib>Wen, Jing</creatorcontrib><creatorcontrib>Guy, Cliff</creatorcontrib><creatorcontrib>Long, Lingyun</creatorcontrib><creatorcontrib>Dhungana, Yogesh</creatorcontrib><creatorcontrib>Rankin, Sherri</creatorcontrib><creatorcontrib>Pelletier, Stephane</creatorcontrib><creatorcontrib>Vogel, Peter</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Peng, Junmin</creatorcontrib><creatorcontrib>Guan, Kun-Liang</creatorcontrib><creatorcontrib>Chi, Hongbo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Hao</au><au>Chapman, Nicole M.</au><au>Wen, Jing</au><au>Guy, Cliff</au><au>Long, Lingyun</au><au>Dhungana, Yogesh</au><au>Rankin, Sherri</au><au>Pelletier, Stephane</au><au>Vogel, Peter</au><au>Wang, Hong</au><au>Peng, Junmin</au><au>Guan, Kun-Liang</au><au>Chi, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2019-12-17</date><risdate>2019</risdate><volume>51</volume><issue>6</issue><spage>1012</spage><epage>1027.e7</epage><pages>1012-1027.e7</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell function by priming and sustaining TCR-induced mTORC1 activity. mTORC1 activation was induced by amino acids, especially arginine and leucine, accompanied by the dynamic lysosomal localization of the mTOR and Tsc complexes. Rag and Rheb GTPases were central regulators of amino acid-dependent mTORC1 activation in effector Treg (eTreg) cells. Mice bearing RagA-RagB- or Rheb1-Rheb2-deficient Treg cells developed a fatal autoimmune disease and had reduced eTreg cell accumulation and function. RagA-RagB regulated mitochondrial and lysosomal fitness, while Rheb1-Rheb2 enforced eTreg cell suppressive gene signature. Together, these findings reveal a crucial requirement of amino acid signaling for licensing and sustaining mTORC1 activation and functional programming of Treg cells. [Display omitted] •Amino acids license mTORC1 activation downstream of TCR and costimulatory signals•Arginine and leucine sustain mTORC1 activity in activated Treg cells•RagA-RagB drive eTreg cell accumulation and function through metabolic regulation•Rheb1-Rheb2 promote cell cycle and suppressive gene signature of eTreg cells Shi et al. show that nutrient signals from amino acids, especially arginine and leucine, are integrated by the small G proteins Rag and Rheb to orchestrate Treg cell activation and function. These data establish a crucial role for amino acid signaling in Treg cell-mediated immune suppression.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31668641</pmid><doi>10.1016/j.immuni.2019.10.001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2019-12, Vol.51 (6), p.1012-1027.e7
issn 1074-7613
1097-4180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6948188
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Activation
Amino acids
Animals
Arginine
Arginine - metabolism
Autoimmune diseases
autoimmunity
Cell Cycle
Cell Differentiation - physiology
Cell Line
Effector cells
eTreg cells
Functional programming
Gene expression
Homeostasis
Humans
Immune Tolerance - immunology
Immunological tolerance
Kinases
Leucine
Leucine - metabolism
Localization
Lymphocyte Activation - immunology
Lymphocytes
Lymphocytes T
Mechanistic Target of Rapamycin Complex 1 - metabolism
metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria
Monomeric GTP-Binding Proteins - genetics
Monomeric GTP-Binding Proteins - metabolism
mTOR
Priming
Proteins
RagA
RagB
Ras Homolog Enriched in Brain Protein - genetics
Ras Homolog Enriched in Brain Protein - metabolism
Receptors, Antigen, T-Cell - immunology
Regulators
Rheb
Sensors
Signaling
T cell receptors
T-Lymphocytes, Regulatory - cytology
T-Lymphocytes, Regulatory - immunology
TOR protein
Treg cells
title Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino%20Acids%20License%20Kinase%20mTORC1%20Activity%20and%20Treg%20Cell%20Function%20via%20Small%20G%20Proteins%20Rag%20and%20Rheb&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Shi,%20Hao&rft.date=2019-12-17&rft.volume=51&rft.issue=6&rft.spage=1012&rft.epage=1027.e7&rft.pages=1012-1027.e7&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2019.10.001&rft_dat=%3Cproquest_pubme%3E2327892130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327892130&rft_id=info:pmid/31668641&rft_els_id=S1074761319304182&rfr_iscdi=true