Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms

In this data article, we present the data used to evaluate the statistical success of the backtracking search optimisation algorithm (BSA) in comparison with the other four evolutionary optimisation algorithms. The data presented in this data article is related to the research article entitles ‘Oper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data in brief 2020-02, Vol.28, p.105046-105046, Article 105046
Hauptverfasser: Hassan, Bryar A., Rashid, Tarik A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105046
container_issue
container_start_page 105046
container_title Data in brief
container_volume 28
creator Hassan, Bryar A.
Rashid, Tarik A.
description In this data article, we present the data used to evaluate the statistical success of the backtracking search optimisation algorithm (BSA) in comparison with the other four evolutionary optimisation algorithms. The data presented in this data article is related to the research article entitles ‘Operational Framework for Recent Advances in Backtracking Search Optimisation Algorithm: A Systematic Review and Performance Evaluation’ [1]. Three statistical tests conducted on BSA compared to differential evolution algorithm (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly algorithm (FF). The tests are used to evaluate these mentioned algorithms and to determine which one could solve a specific optimisation problem concerning the statistical success of 16 benchmark problems taking several criteria into account. The criteria are initializing control parameters, dimension of the problems, their search space, and number of iterations needed to minimise a problem, the performance of the computer used to code the algorithms and their programming style, getting a balance on the effect of randomization, and the use of different type of optimisation problem in terms of hardness and their cohort. In addition, all the three tests include necessary statistical measures (Mean: mean-solution, S.D.: standard-deviation of mean-solution, Best: the best solution, Worst: the worst solution, Exec. Time: mean runtime in seconds, No. of succeeds: number of successful minimisation, and No. of Failure: number of failed minimisation).
doi_str_mv 10.1016/j.dib.2019.105046
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6948123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352340919314027</els_id><sourcerecordid>2336249458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-a035216ac5a28024ae2bac2e4d436ffd675446ed1b2e38d0638fae3e957f266b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAQxyMEolXpA3BBPnLZre3YbiIkJFSgIFXiAmdrYk92vSRxsJ1FfQ2emKlSSrlwsWfGv_nyv6peCr4VXJiLw9aHbiu5aMnXXJkn1amstdzUirdPH9kn1XnOB8650IqC-nl1UotWilaL0-rXeyiQsWQWJ5YLlJBLcDAwmGC4zSGT4dmMqY9phMkhwyMMC3HEx5514L6XREeYdiwjJLdncS5hDHllYNjFFMp-ZC6OMyT07Ce5LFBLF5epYKJo-cvlF9WzHoaM5_f3WfXt44evV582N1-uP1-9u9k4pUXZAKcFhQGnQTZcKkBJw0hUXtWm77251EoZ9KKTWDeem7rpAWts9WUvjenqs-rtWndeuhG9w4kWGeycwgjp1kYI9t-XKeztLh6taVUjZE0FXt8XSPHHgrlY2trhMMCEccmWECNVq3RDqFhRl2LOCfuHNoLbOzntwZKc9k5Ou8pJOa8ez_eQ8Uc8At6sANIvHQMmm11A0siHhK5YH8N_yv8GQMa1vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336249458</pqid></control><display><type>article</type><title>Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hassan, Bryar A. ; Rashid, Tarik A.</creator><creatorcontrib>Hassan, Bryar A. ; Rashid, Tarik A.</creatorcontrib><description>In this data article, we present the data used to evaluate the statistical success of the backtracking search optimisation algorithm (BSA) in comparison with the other four evolutionary optimisation algorithms. The data presented in this data article is related to the research article entitles ‘Operational Framework for Recent Advances in Backtracking Search Optimisation Algorithm: A Systematic Review and Performance Evaluation’ [1]. Three statistical tests conducted on BSA compared to differential evolution algorithm (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly algorithm (FF). The tests are used to evaluate these mentioned algorithms and to determine which one could solve a specific optimisation problem concerning the statistical success of 16 benchmark problems taking several criteria into account. The criteria are initializing control parameters, dimension of the problems, their search space, and number of iterations needed to minimise a problem, the performance of the computer used to code the algorithms and their programming style, getting a balance on the effect of randomization, and the use of different type of optimisation problem in terms of hardness and their cohort. In addition, all the three tests include necessary statistical measures (Mean: mean-solution, S.D.: standard-deviation of mean-solution, Best: the best solution, Worst: the worst solution, Exec. Time: mean runtime in seconds, No. of succeeds: number of successful minimisation, and No. of Failure: number of failed minimisation).</description><identifier>ISSN: 2352-3409</identifier><identifier>EISSN: 2352-3409</identifier><identifier>DOI: 10.1016/j.dib.2019.105046</identifier><identifier>PMID: 31921951</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Backtracking search optimisation algorithm ; BSA experimental data ; BSA performance evaluation ; Mathematics ; Statistical analysis</subject><ispartof>Data in brief, 2020-02, Vol.28, p.105046-105046, Article 105046</ispartof><rights>2019 The Author(s)</rights><rights>2019 The Author(s).</rights><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-a035216ac5a28024ae2bac2e4d436ffd675446ed1b2e38d0638fae3e957f266b3</citedby><cites>FETCH-LOGICAL-c451t-a035216ac5a28024ae2bac2e4d436ffd675446ed1b2e38d0638fae3e957f266b3</cites><orcidid>0000-0002-8661-258X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31921951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hassan, Bryar A.</creatorcontrib><creatorcontrib>Rashid, Tarik A.</creatorcontrib><title>Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms</title><title>Data in brief</title><addtitle>Data Brief</addtitle><description>In this data article, we present the data used to evaluate the statistical success of the backtracking search optimisation algorithm (BSA) in comparison with the other four evolutionary optimisation algorithms. The data presented in this data article is related to the research article entitles ‘Operational Framework for Recent Advances in Backtracking Search Optimisation Algorithm: A Systematic Review and Performance Evaluation’ [1]. Three statistical tests conducted on BSA compared to differential evolution algorithm (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly algorithm (FF). The tests are used to evaluate these mentioned algorithms and to determine which one could solve a specific optimisation problem concerning the statistical success of 16 benchmark problems taking several criteria into account. The criteria are initializing control parameters, dimension of the problems, their search space, and number of iterations needed to minimise a problem, the performance of the computer used to code the algorithms and their programming style, getting a balance on the effect of randomization, and the use of different type of optimisation problem in terms of hardness and their cohort. In addition, all the three tests include necessary statistical measures (Mean: mean-solution, S.D.: standard-deviation of mean-solution, Best: the best solution, Worst: the worst solution, Exec. Time: mean runtime in seconds, No. of succeeds: number of successful minimisation, and No. of Failure: number of failed minimisation).</description><subject>Backtracking search optimisation algorithm</subject><subject>BSA experimental data</subject><subject>BSA performance evaluation</subject><subject>Mathematics</subject><subject>Statistical analysis</subject><issn>2352-3409</issn><issn>2352-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAQxyMEolXpA3BBPnLZre3YbiIkJFSgIFXiAmdrYk92vSRxsJ1FfQ2emKlSSrlwsWfGv_nyv6peCr4VXJiLw9aHbiu5aMnXXJkn1amstdzUirdPH9kn1XnOB8650IqC-nl1UotWilaL0-rXeyiQsWQWJ5YLlJBLcDAwmGC4zSGT4dmMqY9phMkhwyMMC3HEx5514L6XREeYdiwjJLdncS5hDHllYNjFFMp-ZC6OMyT07Ce5LFBLF5epYKJo-cvlF9WzHoaM5_f3WfXt44evV582N1-uP1-9u9k4pUXZAKcFhQGnQTZcKkBJw0hUXtWm77251EoZ9KKTWDeem7rpAWts9WUvjenqs-rtWndeuhG9w4kWGeycwgjp1kYI9t-XKeztLh6taVUjZE0FXt8XSPHHgrlY2trhMMCEccmWECNVq3RDqFhRl2LOCfuHNoLbOzntwZKc9k5Ou8pJOa8ez_eQ8Uc8At6sANIvHQMmm11A0siHhK5YH8N_yv8GQMa1vA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Hassan, Bryar A.</creator><creator>Rashid, Tarik A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8661-258X</orcidid></search><sort><creationdate>20200201</creationdate><title>Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms</title><author>Hassan, Bryar A. ; Rashid, Tarik A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-a035216ac5a28024ae2bac2e4d436ffd675446ed1b2e38d0638fae3e957f266b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Backtracking search optimisation algorithm</topic><topic>BSA experimental data</topic><topic>BSA performance evaluation</topic><topic>Mathematics</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Bryar A.</creatorcontrib><creatorcontrib>Rashid, Tarik A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Data in brief</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Bryar A.</au><au>Rashid, Tarik A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms</atitle><jtitle>Data in brief</jtitle><addtitle>Data Brief</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>28</volume><spage>105046</spage><epage>105046</epage><pages>105046-105046</pages><artnum>105046</artnum><issn>2352-3409</issn><eissn>2352-3409</eissn><abstract>In this data article, we present the data used to evaluate the statistical success of the backtracking search optimisation algorithm (BSA) in comparison with the other four evolutionary optimisation algorithms. The data presented in this data article is related to the research article entitles ‘Operational Framework for Recent Advances in Backtracking Search Optimisation Algorithm: A Systematic Review and Performance Evaluation’ [1]. Three statistical tests conducted on BSA compared to differential evolution algorithm (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly algorithm (FF). The tests are used to evaluate these mentioned algorithms and to determine which one could solve a specific optimisation problem concerning the statistical success of 16 benchmark problems taking several criteria into account. The criteria are initializing control parameters, dimension of the problems, their search space, and number of iterations needed to minimise a problem, the performance of the computer used to code the algorithms and their programming style, getting a balance on the effect of randomization, and the use of different type of optimisation problem in terms of hardness and their cohort. In addition, all the three tests include necessary statistical measures (Mean: mean-solution, S.D.: standard-deviation of mean-solution, Best: the best solution, Worst: the worst solution, Exec. Time: mean runtime in seconds, No. of succeeds: number of successful minimisation, and No. of Failure: number of failed minimisation).</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>31921951</pmid><doi>10.1016/j.dib.2019.105046</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8661-258X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-3409
ispartof Data in brief, 2020-02, Vol.28, p.105046-105046, Article 105046
issn 2352-3409
2352-3409
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6948123
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Backtracking search optimisation algorithm
BSA experimental data
BSA performance evaluation
Mathematics
Statistical analysis
title Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Datasets%20on%20statistical%20analysis%20and%20performance%20evaluation%20of%20backtracking%20search%20optimisation%20algorithm%20compared%20with%20its%20counterpart%20algorithms&rft.jtitle=Data%20in%20brief&rft.au=Hassan,%20Bryar%20A.&rft.date=2020-02-01&rft.volume=28&rft.spage=105046&rft.epage=105046&rft.pages=105046-105046&rft.artnum=105046&rft.issn=2352-3409&rft.eissn=2352-3409&rft_id=info:doi/10.1016/j.dib.2019.105046&rft_dat=%3Cproquest_pubme%3E2336249458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336249458&rft_id=info:pmid/31921951&rft_els_id=S2352340919314027&rfr_iscdi=true