Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models
Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell,...
Gespeichert in:
Veröffentlicht in: | NPJ systems biology and applications 2020-01, Vol.6 (1), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | NPJ systems biology and applications |
container_volume | 6 |
creator | Hadadi, Noushin Pandey, Vikash Chiappino-Pepe, Anush Morales, Marian Gallart-Ayala, Hector Mehl, Florence Ivanisevic, Julijana Sentchilo, Vladimir Meer, Jan R van der |
description | Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems. |
doi_str_mv | 10.1038/s41540-019-0121-4 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6946695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32001719</sourcerecordid><originalsourceid>FETCH-LOGICAL-p785-d15ac6b254f676357ea3a567a995d96e6f32f14f42afa1b975155d1f67aed8ea3</originalsourceid><addsrcrecordid>eNpVkN1KxDAQhYMg7rLuA3gjfYFo0iZpcyPI4h-seLP3ZZpMu5GmKUkVfHsD_qAXw8yZ-c65GEIuOLvirGquk-BSMMq4zlVyKk7IumRS0Zo3ekW2Kb0yxriqRMnZGVlVZVY112uCz2iOMLm0OFO4KbnhuKQ8LKHowCwYHYyFxwW6MGYi4hzDEMF7Nw1FH4Mvgncm0ezAvF_QFgNOwSNNBkYsfLA4pnNy2sOYcPvdN-Rwf3fYPdL9y8PT7nZP57qR1HIJRnWlFL2qVSVrhAqkqkFrabVC1Vdlz0UvSuiBd7qWXErLMwxomwxvyM1X7PzWebQGpyXC2M7ReYgfbQDX_r9M7tgO4b1VWiilZQ64_Bvw6_z5V_UJS_dwAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Hadadi, Noushin ; Pandey, Vikash ; Chiappino-Pepe, Anush ; Morales, Marian ; Gallart-Ayala, Hector ; Mehl, Florence ; Ivanisevic, Julijana ; Sentchilo, Vladimir ; Meer, Jan R van der</creator><creatorcontrib>Hadadi, Noushin ; Pandey, Vikash ; Chiappino-Pepe, Anush ; Morales, Marian ; Gallart-Ayala, Hector ; Mehl, Florence ; Ivanisevic, Julijana ; Sentchilo, Vladimir ; Meer, Jan R van der</creatorcontrib><description>Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.</description><identifier>EISSN: 2056-7189</identifier><identifier>DOI: 10.1038/s41540-019-0121-4</identifier><identifier>PMID: 32001719</identifier><language>eng</language><publisher>England: Nature Publishing Group UK</publisher><subject>Adaptation, Biological - genetics ; Adaptation, Biological - physiology ; Bacteria - genetics ; Bacteria - metabolism ; Biochemical Phenomena ; Biodegradation, Environmental ; Computational Biology - methods ; Genome ; Metabolic Networks and Pathways - genetics ; Models, Biological ; Pseudomonas - genetics ; Pseudomonas - metabolism ; Systems Analysis</subject><ispartof>NPJ systems biology and applications, 2020-01, Vol.6 (1), p.1</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6614-4910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946695/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946695/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32001719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadadi, Noushin</creatorcontrib><creatorcontrib>Pandey, Vikash</creatorcontrib><creatorcontrib>Chiappino-Pepe, Anush</creatorcontrib><creatorcontrib>Morales, Marian</creatorcontrib><creatorcontrib>Gallart-Ayala, Hector</creatorcontrib><creatorcontrib>Mehl, Florence</creatorcontrib><creatorcontrib>Ivanisevic, Julijana</creatorcontrib><creatorcontrib>Sentchilo, Vladimir</creatorcontrib><creatorcontrib>Meer, Jan R van der</creatorcontrib><title>Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models</title><title>NPJ systems biology and applications</title><addtitle>NPJ Syst Biol Appl</addtitle><description>Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.</description><subject>Adaptation, Biological - genetics</subject><subject>Adaptation, Biological - physiology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biochemical Phenomena</subject><subject>Biodegradation, Environmental</subject><subject>Computational Biology - methods</subject><subject>Genome</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Models, Biological</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas - metabolism</subject><subject>Systems Analysis</subject><issn>2056-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN1KxDAQhYMg7rLuA3gjfYFo0iZpcyPI4h-seLP3ZZpMu5GmKUkVfHsD_qAXw8yZ-c65GEIuOLvirGquk-BSMMq4zlVyKk7IumRS0Zo3ekW2Kb0yxriqRMnZGVlVZVY112uCz2iOMLm0OFO4KbnhuKQ8LKHowCwYHYyFxwW6MGYi4hzDEMF7Nw1FH4Mvgncm0ezAvF_QFgNOwSNNBkYsfLA4pnNy2sOYcPvdN-Rwf3fYPdL9y8PT7nZP57qR1HIJRnWlFL2qVSVrhAqkqkFrabVC1Vdlz0UvSuiBd7qWXErLMwxomwxvyM1X7PzWebQGpyXC2M7ReYgfbQDX_r9M7tgO4b1VWiilZQ64_Bvw6_z5V_UJS_dwAw</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Hadadi, Noushin</creator><creator>Pandey, Vikash</creator><creator>Chiappino-Pepe, Anush</creator><creator>Morales, Marian</creator><creator>Gallart-Ayala, Hector</creator><creator>Mehl, Florence</creator><creator>Ivanisevic, Julijana</creator><creator>Sentchilo, Vladimir</creator><creator>Meer, Jan R van der</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6614-4910</orcidid></search><sort><creationdate>20200107</creationdate><title>Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models</title><author>Hadadi, Noushin ; Pandey, Vikash ; Chiappino-Pepe, Anush ; Morales, Marian ; Gallart-Ayala, Hector ; Mehl, Florence ; Ivanisevic, Julijana ; Sentchilo, Vladimir ; Meer, Jan R van der</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p785-d15ac6b254f676357ea3a567a995d96e6f32f14f42afa1b975155d1f67aed8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Biological - genetics</topic><topic>Adaptation, Biological - physiology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biochemical Phenomena</topic><topic>Biodegradation, Environmental</topic><topic>Computational Biology - methods</topic><topic>Genome</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Models, Biological</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas - metabolism</topic><topic>Systems Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadadi, Noushin</creatorcontrib><creatorcontrib>Pandey, Vikash</creatorcontrib><creatorcontrib>Chiappino-Pepe, Anush</creatorcontrib><creatorcontrib>Morales, Marian</creatorcontrib><creatorcontrib>Gallart-Ayala, Hector</creatorcontrib><creatorcontrib>Mehl, Florence</creatorcontrib><creatorcontrib>Ivanisevic, Julijana</creatorcontrib><creatorcontrib>Sentchilo, Vladimir</creatorcontrib><creatorcontrib>Meer, Jan R van der</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ systems biology and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadadi, Noushin</au><au>Pandey, Vikash</au><au>Chiappino-Pepe, Anush</au><au>Morales, Marian</au><au>Gallart-Ayala, Hector</au><au>Mehl, Florence</au><au>Ivanisevic, Julijana</au><au>Sentchilo, Vladimir</au><au>Meer, Jan R van der</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models</atitle><jtitle>NPJ systems biology and applications</jtitle><addtitle>NPJ Syst Biol Appl</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>1</spage><pages>1-</pages><eissn>2056-7189</eissn><abstract>Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.</abstract><cop>England</cop><pub>Nature Publishing Group UK</pub><pmid>32001719</pmid><doi>10.1038/s41540-019-0121-4</doi><orcidid>https://orcid.org/0000-0001-6614-4910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2056-7189 |
ispartof | NPJ systems biology and applications, 2020-01, Vol.6 (1), p.1 |
issn | 2056-7189 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6946695 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central; Springer Nature OA/Free Journals |
subjects | Adaptation, Biological - genetics Adaptation, Biological - physiology Bacteria - genetics Bacteria - metabolism Biochemical Phenomena Biodegradation, Environmental Computational Biology - methods Genome Metabolic Networks and Pathways - genetics Models, Biological Pseudomonas - genetics Pseudomonas - metabolism Systems Analysis |
title | Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20insights%20into%20bacterial%20metabolic%20reprogramming%20from%20omics-integrated%20genome-scale%20models&rft.jtitle=NPJ%20systems%20biology%20and%20applications&rft.au=Hadadi,%20Noushin&rft.date=2020-01-07&rft.volume=6&rft.issue=1&rft.spage=1&rft.pages=1-&rft.eissn=2056-7189&rft_id=info:doi/10.1038/s41540-019-0121-4&rft_dat=%3Cpubmed%3E32001719%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32001719&rfr_iscdi=true |