Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models

Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ systems biology and applications 2020-01, Vol.6 (1), p.1
Hauptverfasser: Hadadi, Noushin, Pandey, Vikash, Chiappino-Pepe, Anush, Morales, Marian, Gallart-Ayala, Hector, Mehl, Florence, Ivanisevic, Julijana, Sentchilo, Vladimir, Meer, Jan R van der
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title NPJ systems biology and applications
container_volume 6
creator Hadadi, Noushin
Pandey, Vikash
Chiappino-Pepe, Anush
Morales, Marian
Gallart-Ayala, Hector
Mehl, Florence
Ivanisevic, Julijana
Sentchilo, Vladimir
Meer, Jan R van der
description Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.
doi_str_mv 10.1038/s41540-019-0121-4
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6946695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32001719</sourcerecordid><originalsourceid>FETCH-LOGICAL-p785-d15ac6b254f676357ea3a567a995d96e6f32f14f42afa1b975155d1f67aed8ea3</originalsourceid><addsrcrecordid>eNpVkN1KxDAQhYMg7rLuA3gjfYFo0iZpcyPI4h-seLP3ZZpMu5GmKUkVfHsD_qAXw8yZ-c65GEIuOLvirGquk-BSMMq4zlVyKk7IumRS0Zo3ekW2Kb0yxriqRMnZGVlVZVY112uCz2iOMLm0OFO4KbnhuKQ8LKHowCwYHYyFxwW6MGYi4hzDEMF7Nw1FH4Mvgncm0ezAvF_QFgNOwSNNBkYsfLA4pnNy2sOYcPvdN-Rwf3fYPdL9y8PT7nZP57qR1HIJRnWlFL2qVSVrhAqkqkFrabVC1Vdlz0UvSuiBd7qWXErLMwxomwxvyM1X7PzWebQGpyXC2M7ReYgfbQDX_r9M7tgO4b1VWiilZQ64_Bvw6_z5V_UJS_dwAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Hadadi, Noushin ; Pandey, Vikash ; Chiappino-Pepe, Anush ; Morales, Marian ; Gallart-Ayala, Hector ; Mehl, Florence ; Ivanisevic, Julijana ; Sentchilo, Vladimir ; Meer, Jan R van der</creator><creatorcontrib>Hadadi, Noushin ; Pandey, Vikash ; Chiappino-Pepe, Anush ; Morales, Marian ; Gallart-Ayala, Hector ; Mehl, Florence ; Ivanisevic, Julijana ; Sentchilo, Vladimir ; Meer, Jan R van der</creatorcontrib><description>Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.</description><identifier>EISSN: 2056-7189</identifier><identifier>DOI: 10.1038/s41540-019-0121-4</identifier><identifier>PMID: 32001719</identifier><language>eng</language><publisher>England: Nature Publishing Group UK</publisher><subject>Adaptation, Biological - genetics ; Adaptation, Biological - physiology ; Bacteria - genetics ; Bacteria - metabolism ; Biochemical Phenomena ; Biodegradation, Environmental ; Computational Biology - methods ; Genome ; Metabolic Networks and Pathways - genetics ; Models, Biological ; Pseudomonas - genetics ; Pseudomonas - metabolism ; Systems Analysis</subject><ispartof>NPJ systems biology and applications, 2020-01, Vol.6 (1), p.1</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6614-4910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946695/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946695/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32001719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadadi, Noushin</creatorcontrib><creatorcontrib>Pandey, Vikash</creatorcontrib><creatorcontrib>Chiappino-Pepe, Anush</creatorcontrib><creatorcontrib>Morales, Marian</creatorcontrib><creatorcontrib>Gallart-Ayala, Hector</creatorcontrib><creatorcontrib>Mehl, Florence</creatorcontrib><creatorcontrib>Ivanisevic, Julijana</creatorcontrib><creatorcontrib>Sentchilo, Vladimir</creatorcontrib><creatorcontrib>Meer, Jan R van der</creatorcontrib><title>Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models</title><title>NPJ systems biology and applications</title><addtitle>NPJ Syst Biol Appl</addtitle><description>Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.</description><subject>Adaptation, Biological - genetics</subject><subject>Adaptation, Biological - physiology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biochemical Phenomena</subject><subject>Biodegradation, Environmental</subject><subject>Computational Biology - methods</subject><subject>Genome</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Models, Biological</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas - metabolism</subject><subject>Systems Analysis</subject><issn>2056-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN1KxDAQhYMg7rLuA3gjfYFo0iZpcyPI4h-seLP3ZZpMu5GmKUkVfHsD_qAXw8yZ-c65GEIuOLvirGquk-BSMMq4zlVyKk7IumRS0Zo3ekW2Kb0yxriqRMnZGVlVZVY112uCz2iOMLm0OFO4KbnhuKQ8LKHowCwYHYyFxwW6MGYi4hzDEMF7Nw1FH4Mvgncm0ezAvF_QFgNOwSNNBkYsfLA4pnNy2sOYcPvdN-Rwf3fYPdL9y8PT7nZP57qR1HIJRnWlFL2qVSVrhAqkqkFrabVC1Vdlz0UvSuiBd7qWXErLMwxomwxvyM1X7PzWebQGpyXC2M7ReYgfbQDX_r9M7tgO4b1VWiilZQ64_Bvw6_z5V_UJS_dwAw</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Hadadi, Noushin</creator><creator>Pandey, Vikash</creator><creator>Chiappino-Pepe, Anush</creator><creator>Morales, Marian</creator><creator>Gallart-Ayala, Hector</creator><creator>Mehl, Florence</creator><creator>Ivanisevic, Julijana</creator><creator>Sentchilo, Vladimir</creator><creator>Meer, Jan R van der</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6614-4910</orcidid></search><sort><creationdate>20200107</creationdate><title>Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models</title><author>Hadadi, Noushin ; Pandey, Vikash ; Chiappino-Pepe, Anush ; Morales, Marian ; Gallart-Ayala, Hector ; Mehl, Florence ; Ivanisevic, Julijana ; Sentchilo, Vladimir ; Meer, Jan R van der</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p785-d15ac6b254f676357ea3a567a995d96e6f32f14f42afa1b975155d1f67aed8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Biological - genetics</topic><topic>Adaptation, Biological - physiology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biochemical Phenomena</topic><topic>Biodegradation, Environmental</topic><topic>Computational Biology - methods</topic><topic>Genome</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Models, Biological</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas - metabolism</topic><topic>Systems Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadadi, Noushin</creatorcontrib><creatorcontrib>Pandey, Vikash</creatorcontrib><creatorcontrib>Chiappino-Pepe, Anush</creatorcontrib><creatorcontrib>Morales, Marian</creatorcontrib><creatorcontrib>Gallart-Ayala, Hector</creatorcontrib><creatorcontrib>Mehl, Florence</creatorcontrib><creatorcontrib>Ivanisevic, Julijana</creatorcontrib><creatorcontrib>Sentchilo, Vladimir</creatorcontrib><creatorcontrib>Meer, Jan R van der</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ systems biology and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadadi, Noushin</au><au>Pandey, Vikash</au><au>Chiappino-Pepe, Anush</au><au>Morales, Marian</au><au>Gallart-Ayala, Hector</au><au>Mehl, Florence</au><au>Ivanisevic, Julijana</au><au>Sentchilo, Vladimir</au><au>Meer, Jan R van der</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models</atitle><jtitle>NPJ systems biology and applications</jtitle><addtitle>NPJ Syst Biol Appl</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>1</spage><pages>1-</pages><eissn>2056-7189</eissn><abstract>Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.</abstract><cop>England</cop><pub>Nature Publishing Group UK</pub><pmid>32001719</pmid><doi>10.1038/s41540-019-0121-4</doi><orcidid>https://orcid.org/0000-0001-6614-4910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2056-7189
ispartof NPJ systems biology and applications, 2020-01, Vol.6 (1), p.1
issn 2056-7189
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6946695
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central; Springer Nature OA/Free Journals
subjects Adaptation, Biological - genetics
Adaptation, Biological - physiology
Bacteria - genetics
Bacteria - metabolism
Biochemical Phenomena
Biodegradation, Environmental
Computational Biology - methods
Genome
Metabolic Networks and Pathways - genetics
Models, Biological
Pseudomonas - genetics
Pseudomonas - metabolism
Systems Analysis
title Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20insights%20into%20bacterial%20metabolic%20reprogramming%20from%20omics-integrated%20genome-scale%20models&rft.jtitle=NPJ%20systems%20biology%20and%20applications&rft.au=Hadadi,%20Noushin&rft.date=2020-01-07&rft.volume=6&rft.issue=1&rft.spage=1&rft.pages=1-&rft.eissn=2056-7189&rft_id=info:doi/10.1038/s41540-019-0121-4&rft_dat=%3Cpubmed%3E32001719%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32001719&rfr_iscdi=true