ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types

Abstract Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2020-01, Vol.48 (D1), p.D956-D963
Hauptverfasser: Li, Jiang, Xue, Yawen, Amin, Muhammad Talal, Yang, Yanbo, Yang, Jiajun, Zhang, Wen, Yang, Wenqian, Niu, Xiaohui, Zhang, Hong-Yu, Gong, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page D963
container_issue D1
container_start_page D956
container_title Nucleic acids research
container_volume 48
creator Li, Jiang
Xue, Yawen
Amin, Muhammad Talal
Yang, Yanbo
Yang, Jiajun
Zhang, Wen
Yang, Wenqian
Niu, Xiaohui
Zhang, Hong-Yu
Gong, Jing
description Abstract Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression are largely unknown. Therefore, genome-wide expression quantitative trait loci (eQTL) analysis to assess the effects of SNPs on ncRNA expression, especially in multiple cancer types, will help to understand how risk alleles contribute toward tumorigenesis and cancer development. Using genotype data and expression profiles of ncRNAs of >8700 samples from The Cancer Genome Atlas (TCGA), we developed a computational pipeline to systematically identify ncRNA-related eQTLs (ncRNA-eQTLs) across 33 cancer types. We identified a total of 6 133 278 and 721 122 eQTL-ncRNA pairs in cis-eQTL and trans-eQTL analyses, respectively. Further survival analyses identified 8312 eQTLs associated with patient survival times. Furthermore, we linked ncRNA-eQTLs to genome-wide association study (GWAS) data and found 262 332 ncRNA-eQTLs overlapping with known disease- and trait-associated loci. Finally, a user-friendly database, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed for free searching, browsing and downloading of all ncRNA-eQTLs. We anticipate that such an integrative and comprehensive resource will improve our understanding of the mechanistic basis of human complex phenotypic variation, especially for ncRNA- and cancer-related studies.
doi_str_mv 10.1093/nar/gkz711
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6943077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz711</oup_id><sourcerecordid>2273215430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f667f383eeaa97454663e9df150eb1330c63b6f41862dc7870944a35dfc2cb893</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EotPChh-AvEFClULt2LETFkhVxUsalVdZWzfO9TSQsYPtjBh-PYYpFWxYXcvf0fHjI-QRZ88468SZh3i2-fpDc36HrLhQdSU7Vd8lKyZYU3Em2yNynNIXxrjkjbxPjkRZlO12RXbefrw8r_DD1fo5BTpAhh4S0hxo2qeMW8ijhWnaU9zBtEAu0TVSdA5tTjQ4-unyfZme-uArG4bRb2gxUvw-R0xpLAnYGFKiFrzFSPN-xvSA3HMwJXx4M0_I51cvry7eVOt3r99enK8rK7XMlVNKO9EKRIBOy0YqJbAbHG8Y9lwIZpXolZO8VfVgdatZJyWIZnC2tn3biRPy4uCdl36Lg0WfI0xmjuMW4t4EGM2_iR-vzSbsjOqkYFoXwdMbQQzfFkzZbMdkcZrAY1iSqWst6vKpghX09ID-fm5Ed3sMZ-ZXUaYUZQ5FFfjx3xe7Rf80U4AnByAs8_9EPwH5DJ2V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273215430</pqid></control><display><type>article</type><title>ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Jiang ; Xue, Yawen ; Amin, Muhammad Talal ; Yang, Yanbo ; Yang, Jiajun ; Zhang, Wen ; Yang, Wenqian ; Niu, Xiaohui ; Zhang, Hong-Yu ; Gong, Jing</creator><creatorcontrib>Li, Jiang ; Xue, Yawen ; Amin, Muhammad Talal ; Yang, Yanbo ; Yang, Jiajun ; Zhang, Wen ; Yang, Wenqian ; Niu, Xiaohui ; Zhang, Hong-Yu ; Gong, Jing</creatorcontrib><description>Abstract Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression are largely unknown. Therefore, genome-wide expression quantitative trait loci (eQTL) analysis to assess the effects of SNPs on ncRNA expression, especially in multiple cancer types, will help to understand how risk alleles contribute toward tumorigenesis and cancer development. Using genotype data and expression profiles of ncRNAs of &gt;8700 samples from The Cancer Genome Atlas (TCGA), we developed a computational pipeline to systematically identify ncRNA-related eQTLs (ncRNA-eQTLs) across 33 cancer types. We identified a total of 6 133 278 and 721 122 eQTL-ncRNA pairs in cis-eQTL and trans-eQTL analyses, respectively. Further survival analyses identified 8312 eQTLs associated with patient survival times. Furthermore, we linked ncRNA-eQTLs to genome-wide association study (GWAS) data and found 262 332 ncRNA-eQTLs overlapping with known disease- and trait-associated loci. Finally, a user-friendly database, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed for free searching, browsing and downloading of all ncRNA-eQTLs. We anticipate that such an integrative and comprehensive resource will improve our understanding of the mechanistic basis of human complex phenotypic variation, especially for ncRNA- and cancer-related studies.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz711</identifier><identifier>PMID: 31410488</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alleles ; Computational Biology - methods ; Database Issue ; Databases, Genetic ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic ; Genetic Predisposition to Disease ; Genome-Wide Association Study - methods ; Genotype ; Humans ; Neoplasms - genetics ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; RNA, Untranslated ; Software ; Software Design ; User-Computer Interface ; Web Browser</subject><ispartof>Nucleic acids research, 2020-01, Vol.48 (D1), p.D956-D963</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f667f383eeaa97454663e9df150eb1330c63b6f41862dc7870944a35dfc2cb893</citedby><cites>FETCH-LOGICAL-c474t-f667f383eeaa97454663e9df150eb1330c63b6f41862dc7870944a35dfc2cb893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943077/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31410488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Xue, Yawen</creatorcontrib><creatorcontrib>Amin, Muhammad Talal</creatorcontrib><creatorcontrib>Yang, Yanbo</creatorcontrib><creatorcontrib>Yang, Jiajun</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Yang, Wenqian</creatorcontrib><creatorcontrib>Niu, Xiaohui</creatorcontrib><creatorcontrib>Zhang, Hong-Yu</creatorcontrib><creatorcontrib>Gong, Jing</creatorcontrib><title>ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression are largely unknown. Therefore, genome-wide expression quantitative trait loci (eQTL) analysis to assess the effects of SNPs on ncRNA expression, especially in multiple cancer types, will help to understand how risk alleles contribute toward tumorigenesis and cancer development. Using genotype data and expression profiles of ncRNAs of &gt;8700 samples from The Cancer Genome Atlas (TCGA), we developed a computational pipeline to systematically identify ncRNA-related eQTLs (ncRNA-eQTLs) across 33 cancer types. We identified a total of 6 133 278 and 721 122 eQTL-ncRNA pairs in cis-eQTL and trans-eQTL analyses, respectively. Further survival analyses identified 8312 eQTLs associated with patient survival times. Furthermore, we linked ncRNA-eQTLs to genome-wide association study (GWAS) data and found 262 332 ncRNA-eQTLs overlapping with known disease- and trait-associated loci. Finally, a user-friendly database, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed for free searching, browsing and downloading of all ncRNA-eQTLs. We anticipate that such an integrative and comprehensive resource will improve our understanding of the mechanistic basis of human complex phenotypic variation, especially for ncRNA- and cancer-related studies.</description><subject>Alleles</subject><subject>Computational Biology - methods</subject><subject>Database Issue</subject><subject>Databases, Genetic</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genotype</subject><subject>Humans</subject><subject>Neoplasms - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>RNA, Untranslated</subject><subject>Software</subject><subject>Software Design</subject><subject>User-Computer Interface</subject><subject>Web Browser</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAURi0EotPChh-AvEFClULt2LETFkhVxUsalVdZWzfO9TSQsYPtjBh-PYYpFWxYXcvf0fHjI-QRZ88468SZh3i2-fpDc36HrLhQdSU7Vd8lKyZYU3Em2yNynNIXxrjkjbxPjkRZlO12RXbefrw8r_DD1fo5BTpAhh4S0hxo2qeMW8ijhWnaU9zBtEAu0TVSdA5tTjQ4-unyfZme-uArG4bRb2gxUvw-R0xpLAnYGFKiFrzFSPN-xvSA3HMwJXx4M0_I51cvry7eVOt3r99enK8rK7XMlVNKO9EKRIBOy0YqJbAbHG8Y9lwIZpXolZO8VfVgdatZJyWIZnC2tn3biRPy4uCdl36Lg0WfI0xmjuMW4t4EGM2_iR-vzSbsjOqkYFoXwdMbQQzfFkzZbMdkcZrAY1iSqWst6vKpghX09ID-fm5Ed3sMZ-ZXUaYUZQ5FFfjx3xe7Rf80U4AnByAs8_9EPwH5DJ2V</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Li, Jiang</creator><creator>Xue, Yawen</creator><creator>Amin, Muhammad Talal</creator><creator>Yang, Yanbo</creator><creator>Yang, Jiajun</creator><creator>Zhang, Wen</creator><creator>Yang, Wenqian</creator><creator>Niu, Xiaohui</creator><creator>Zhang, Hong-Yu</creator><creator>Gong, Jing</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200108</creationdate><title>ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types</title><author>Li, Jiang ; Xue, Yawen ; Amin, Muhammad Talal ; Yang, Yanbo ; Yang, Jiajun ; Zhang, Wen ; Yang, Wenqian ; Niu, Xiaohui ; Zhang, Hong-Yu ; Gong, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f667f383eeaa97454663e9df150eb1330c63b6f41862dc7870944a35dfc2cb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Computational Biology - methods</topic><topic>Database Issue</topic><topic>Databases, Genetic</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genotype</topic><topic>Humans</topic><topic>Neoplasms - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>RNA, Untranslated</topic><topic>Software</topic><topic>Software Design</topic><topic>User-Computer Interface</topic><topic>Web Browser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Xue, Yawen</creatorcontrib><creatorcontrib>Amin, Muhammad Talal</creatorcontrib><creatorcontrib>Yang, Yanbo</creatorcontrib><creatorcontrib>Yang, Jiajun</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Yang, Wenqian</creatorcontrib><creatorcontrib>Niu, Xiaohui</creatorcontrib><creatorcontrib>Zhang, Hong-Yu</creatorcontrib><creatorcontrib>Gong, Jing</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiang</au><au>Xue, Yawen</au><au>Amin, Muhammad Talal</au><au>Yang, Yanbo</au><au>Yang, Jiajun</au><au>Zhang, Wen</au><au>Yang, Wenqian</au><au>Niu, Xiaohui</au><au>Zhang, Hong-Yu</au><au>Gong, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>48</volume><issue>D1</issue><spage>D956</spage><epage>D963</epage><pages>D956-D963</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression are largely unknown. Therefore, genome-wide expression quantitative trait loci (eQTL) analysis to assess the effects of SNPs on ncRNA expression, especially in multiple cancer types, will help to understand how risk alleles contribute toward tumorigenesis and cancer development. Using genotype data and expression profiles of ncRNAs of &gt;8700 samples from The Cancer Genome Atlas (TCGA), we developed a computational pipeline to systematically identify ncRNA-related eQTLs (ncRNA-eQTLs) across 33 cancer types. We identified a total of 6 133 278 and 721 122 eQTL-ncRNA pairs in cis-eQTL and trans-eQTL analyses, respectively. Further survival analyses identified 8312 eQTLs associated with patient survival times. Furthermore, we linked ncRNA-eQTLs to genome-wide association study (GWAS) data and found 262 332 ncRNA-eQTLs overlapping with known disease- and trait-associated loci. Finally, a user-friendly database, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed for free searching, browsing and downloading of all ncRNA-eQTLs. We anticipate that such an integrative and comprehensive resource will improve our understanding of the mechanistic basis of human complex phenotypic variation, especially for ncRNA- and cancer-related studies.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31410488</pmid><doi>10.1093/nar/gkz711</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2020-01, Vol.48 (D1), p.D956-D963
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6943077
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alleles
Computational Biology - methods
Database Issue
Databases, Genetic
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic
Genetic Predisposition to Disease
Genome-Wide Association Study - methods
Genotype
Humans
Neoplasms - genetics
Polymorphism, Single Nucleotide
Quantitative Trait Loci
RNA, Untranslated
Software
Software Design
User-Computer Interface
Web Browser
title ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ncRNA-eQTL:%20a%20database%20to%20systematically%20evaluate%20the%20effects%20of%20SNPs%20on%20non-coding%20RNA%20expression%20across%20cancer%20types&rft.jtitle=Nucleic%20acids%20research&rft.au=Li,%20Jiang&rft.date=2020-01-08&rft.volume=48&rft.issue=D1&rft.spage=D956&rft.epage=D963&rft.pages=D956-D963&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz711&rft_dat=%3Cproquest_pubme%3E2273215430%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273215430&rft_id=info:pmid/31410488&rft_oup_id=10.1093/nar/gkz711&rfr_iscdi=true