ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types
Abstract Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression ar...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2020-01, Vol.48 (D1), p.D956-D963 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | D963 |
---|---|
container_issue | D1 |
container_start_page | D956 |
container_title | Nucleic acids research |
container_volume | 48 |
creator | Li, Jiang Xue, Yawen Amin, Muhammad Talal Yang, Yanbo Yang, Jiajun Zhang, Wen Yang, Wenqian Niu, Xiaohui Zhang, Hong-Yu Gong, Jing |
description | Abstract
Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression are largely unknown. Therefore, genome-wide expression quantitative trait loci (eQTL) analysis to assess the effects of SNPs on ncRNA expression, especially in multiple cancer types, will help to understand how risk alleles contribute toward tumorigenesis and cancer development. Using genotype data and expression profiles of ncRNAs of >8700 samples from The Cancer Genome Atlas (TCGA), we developed a computational pipeline to systematically identify ncRNA-related eQTLs (ncRNA-eQTLs) across 33 cancer types. We identified a total of 6 133 278 and 721 122 eQTL-ncRNA pairs in cis-eQTL and trans-eQTL analyses, respectively. Further survival analyses identified 8312 eQTLs associated with patient survival times. Furthermore, we linked ncRNA-eQTLs to genome-wide association study (GWAS) data and found 262 332 ncRNA-eQTLs overlapping with known disease- and trait-associated loci. Finally, a user-friendly database, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed for free searching, browsing and downloading of all ncRNA-eQTLs. We anticipate that such an integrative and comprehensive resource will improve our understanding of the mechanistic basis of human complex phenotypic variation, especially for ncRNA- and cancer-related studies. |
doi_str_mv | 10.1093/nar/gkz711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6943077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz711</oup_id><sourcerecordid>2273215430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f667f383eeaa97454663e9df150eb1330c63b6f41862dc7870944a35dfc2cb893</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EotPChh-AvEFClULt2LETFkhVxUsalVdZWzfO9TSQsYPtjBh-PYYpFWxYXcvf0fHjI-QRZ88468SZh3i2-fpDc36HrLhQdSU7Vd8lKyZYU3Em2yNynNIXxrjkjbxPjkRZlO12RXbefrw8r_DD1fo5BTpAhh4S0hxo2qeMW8ijhWnaU9zBtEAu0TVSdA5tTjQ4-unyfZme-uArG4bRb2gxUvw-R0xpLAnYGFKiFrzFSPN-xvSA3HMwJXx4M0_I51cvry7eVOt3r99enK8rK7XMlVNKO9EKRIBOy0YqJbAbHG8Y9lwIZpXolZO8VfVgdatZJyWIZnC2tn3biRPy4uCdl36Lg0WfI0xmjuMW4t4EGM2_iR-vzSbsjOqkYFoXwdMbQQzfFkzZbMdkcZrAY1iSqWst6vKpghX09ID-fm5Ed3sMZ-ZXUaYUZQ5FFfjx3xe7Rf80U4AnByAs8_9EPwH5DJ2V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273215430</pqid></control><display><type>article</type><title>ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Jiang ; Xue, Yawen ; Amin, Muhammad Talal ; Yang, Yanbo ; Yang, Jiajun ; Zhang, Wen ; Yang, Wenqian ; Niu, Xiaohui ; Zhang, Hong-Yu ; Gong, Jing</creator><creatorcontrib>Li, Jiang ; Xue, Yawen ; Amin, Muhammad Talal ; Yang, Yanbo ; Yang, Jiajun ; Zhang, Wen ; Yang, Wenqian ; Niu, Xiaohui ; Zhang, Hong-Yu ; Gong, Jing</creatorcontrib><description>Abstract
Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression are largely unknown. Therefore, genome-wide expression quantitative trait loci (eQTL) analysis to assess the effects of SNPs on ncRNA expression, especially in multiple cancer types, will help to understand how risk alleles contribute toward tumorigenesis and cancer development. Using genotype data and expression profiles of ncRNAs of >8700 samples from The Cancer Genome Atlas (TCGA), we developed a computational pipeline to systematically identify ncRNA-related eQTLs (ncRNA-eQTLs) across 33 cancer types. We identified a total of 6 133 278 and 721 122 eQTL-ncRNA pairs in cis-eQTL and trans-eQTL analyses, respectively. Further survival analyses identified 8312 eQTLs associated with patient survival times. Furthermore, we linked ncRNA-eQTLs to genome-wide association study (GWAS) data and found 262 332 ncRNA-eQTLs overlapping with known disease- and trait-associated loci. Finally, a user-friendly database, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed for free searching, browsing and downloading of all ncRNA-eQTLs. We anticipate that such an integrative and comprehensive resource will improve our understanding of the mechanistic basis of human complex phenotypic variation, especially for ncRNA- and cancer-related studies.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz711</identifier><identifier>PMID: 31410488</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alleles ; Computational Biology - methods ; Database Issue ; Databases, Genetic ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic ; Genetic Predisposition to Disease ; Genome-Wide Association Study - methods ; Genotype ; Humans ; Neoplasms - genetics ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; RNA, Untranslated ; Software ; Software Design ; User-Computer Interface ; Web Browser</subject><ispartof>Nucleic acids research, 2020-01, Vol.48 (D1), p.D956-D963</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f667f383eeaa97454663e9df150eb1330c63b6f41862dc7870944a35dfc2cb893</citedby><cites>FETCH-LOGICAL-c474t-f667f383eeaa97454663e9df150eb1330c63b6f41862dc7870944a35dfc2cb893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943077/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31410488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Xue, Yawen</creatorcontrib><creatorcontrib>Amin, Muhammad Talal</creatorcontrib><creatorcontrib>Yang, Yanbo</creatorcontrib><creatorcontrib>Yang, Jiajun</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Yang, Wenqian</creatorcontrib><creatorcontrib>Niu, Xiaohui</creatorcontrib><creatorcontrib>Zhang, Hong-Yu</creatorcontrib><creatorcontrib>Gong, Jing</creatorcontrib><title>ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression are largely unknown. Therefore, genome-wide expression quantitative trait loci (eQTL) analysis to assess the effects of SNPs on ncRNA expression, especially in multiple cancer types, will help to understand how risk alleles contribute toward tumorigenesis and cancer development. Using genotype data and expression profiles of ncRNAs of >8700 samples from The Cancer Genome Atlas (TCGA), we developed a computational pipeline to systematically identify ncRNA-related eQTLs (ncRNA-eQTLs) across 33 cancer types. We identified a total of 6 133 278 and 721 122 eQTL-ncRNA pairs in cis-eQTL and trans-eQTL analyses, respectively. Further survival analyses identified 8312 eQTLs associated with patient survival times. Furthermore, we linked ncRNA-eQTLs to genome-wide association study (GWAS) data and found 262 332 ncRNA-eQTLs overlapping with known disease- and trait-associated loci. Finally, a user-friendly database, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed for free searching, browsing and downloading of all ncRNA-eQTLs. We anticipate that such an integrative and comprehensive resource will improve our understanding of the mechanistic basis of human complex phenotypic variation, especially for ncRNA- and cancer-related studies.</description><subject>Alleles</subject><subject>Computational Biology - methods</subject><subject>Database Issue</subject><subject>Databases, Genetic</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genotype</subject><subject>Humans</subject><subject>Neoplasms - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>RNA, Untranslated</subject><subject>Software</subject><subject>Software Design</subject><subject>User-Computer Interface</subject><subject>Web Browser</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAURi0EotPChh-AvEFClULt2LETFkhVxUsalVdZWzfO9TSQsYPtjBh-PYYpFWxYXcvf0fHjI-QRZ88468SZh3i2-fpDc36HrLhQdSU7Vd8lKyZYU3Em2yNynNIXxrjkjbxPjkRZlO12RXbefrw8r_DD1fo5BTpAhh4S0hxo2qeMW8ijhWnaU9zBtEAu0TVSdA5tTjQ4-unyfZme-uArG4bRb2gxUvw-R0xpLAnYGFKiFrzFSPN-xvSA3HMwJXx4M0_I51cvry7eVOt3r99enK8rK7XMlVNKO9EKRIBOy0YqJbAbHG8Y9lwIZpXolZO8VfVgdatZJyWIZnC2tn3biRPy4uCdl36Lg0WfI0xmjuMW4t4EGM2_iR-vzSbsjOqkYFoXwdMbQQzfFkzZbMdkcZrAY1iSqWst6vKpghX09ID-fm5Ed3sMZ-ZXUaYUZQ5FFfjx3xe7Rf80U4AnByAs8_9EPwH5DJ2V</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Li, Jiang</creator><creator>Xue, Yawen</creator><creator>Amin, Muhammad Talal</creator><creator>Yang, Yanbo</creator><creator>Yang, Jiajun</creator><creator>Zhang, Wen</creator><creator>Yang, Wenqian</creator><creator>Niu, Xiaohui</creator><creator>Zhang, Hong-Yu</creator><creator>Gong, Jing</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200108</creationdate><title>ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types</title><author>Li, Jiang ; Xue, Yawen ; Amin, Muhammad Talal ; Yang, Yanbo ; Yang, Jiajun ; Zhang, Wen ; Yang, Wenqian ; Niu, Xiaohui ; Zhang, Hong-Yu ; Gong, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f667f383eeaa97454663e9df150eb1330c63b6f41862dc7870944a35dfc2cb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Computational Biology - methods</topic><topic>Database Issue</topic><topic>Databases, Genetic</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genotype</topic><topic>Humans</topic><topic>Neoplasms - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>RNA, Untranslated</topic><topic>Software</topic><topic>Software Design</topic><topic>User-Computer Interface</topic><topic>Web Browser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Xue, Yawen</creatorcontrib><creatorcontrib>Amin, Muhammad Talal</creatorcontrib><creatorcontrib>Yang, Yanbo</creatorcontrib><creatorcontrib>Yang, Jiajun</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Yang, Wenqian</creatorcontrib><creatorcontrib>Niu, Xiaohui</creatorcontrib><creatorcontrib>Zhang, Hong-Yu</creatorcontrib><creatorcontrib>Gong, Jing</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiang</au><au>Xue, Yawen</au><au>Amin, Muhammad Talal</au><au>Yang, Yanbo</au><au>Yang, Jiajun</au><au>Zhang, Wen</au><au>Yang, Wenqian</au><au>Niu, Xiaohui</au><au>Zhang, Hong-Yu</au><au>Gong, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>48</volume><issue>D1</issue><spage>D956</spage><epage>D963</epage><pages>D956-D963</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Numerous studies indicate that non-coding RNAs (ncRNAs) have critical functions across biological processes, and single-nucleotide polymorphisms (SNPs) could contribute to diseases or traits through influencing ncRNA expression. However, the associations between SNPs and ncRNA expression are largely unknown. Therefore, genome-wide expression quantitative trait loci (eQTL) analysis to assess the effects of SNPs on ncRNA expression, especially in multiple cancer types, will help to understand how risk alleles contribute toward tumorigenesis and cancer development. Using genotype data and expression profiles of ncRNAs of >8700 samples from The Cancer Genome Atlas (TCGA), we developed a computational pipeline to systematically identify ncRNA-related eQTLs (ncRNA-eQTLs) across 33 cancer types. We identified a total of 6 133 278 and 721 122 eQTL-ncRNA pairs in cis-eQTL and trans-eQTL analyses, respectively. Further survival analyses identified 8312 eQTLs associated with patient survival times. Furthermore, we linked ncRNA-eQTLs to genome-wide association study (GWAS) data and found 262 332 ncRNA-eQTLs overlapping with known disease- and trait-associated loci. Finally, a user-friendly database, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed for free searching, browsing and downloading of all ncRNA-eQTLs. We anticipate that such an integrative and comprehensive resource will improve our understanding of the mechanistic basis of human complex phenotypic variation, especially for ncRNA- and cancer-related studies.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31410488</pmid><doi>10.1093/nar/gkz711</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2020-01, Vol.48 (D1), p.D956-D963 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6943077 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alleles Computational Biology - methods Database Issue Databases, Genetic Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic Genetic Predisposition to Disease Genome-Wide Association Study - methods Genotype Humans Neoplasms - genetics Polymorphism, Single Nucleotide Quantitative Trait Loci RNA, Untranslated Software Software Design User-Computer Interface Web Browser |
title | ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ncRNA-eQTL:%20a%20database%20to%20systematically%20evaluate%20the%20effects%20of%20SNPs%20on%20non-coding%20RNA%20expression%20across%20cancer%20types&rft.jtitle=Nucleic%20acids%20research&rft.au=Li,%20Jiang&rft.date=2020-01-08&rft.volume=48&rft.issue=D1&rft.spage=D956&rft.epage=D963&rft.pages=D956-D963&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz711&rft_dat=%3Cproquest_pubme%3E2273215430%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273215430&rft_id=info:pmid/31410488&rft_oup_id=10.1093/nar/gkz711&rfr_iscdi=true |