Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter
Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matte...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2019-12, Vol.286 (1916), p.20192153 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1916 |
container_start_page | 20192153 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 286 |
creator | Achlatis, Michelle Pernice, Mathieu Green, Kathryn de Goeij, Jasper M Guagliardo, Paul Kilburn, Matthew R Hoegh-Guldberg, Ove Dove, Sophie |
description | Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matter in the ocean and is recycled primarily by bacterial mediation. Little is known, however, about the mechanism that enables sponges to incorporate large quantities of DOM in their nutrition, unlike most other invertebrates. Here, we examine the cellular capacity for direct processing of DOM, and the fate of the processed matter, inside a dinoflagellate-hosting bioeroding sponge that is prominent on Indo-Pacific coral reefs. Integrating transmission electron microscopy with nanoscale secondary ion mass spectrometry, we track
N- and
C-enriched DOM over time at the individual cell level of an intact sponge holobiont. We show initial high enrichment in the filter-feeding cells of the sponge, providing visual evidence of their capacity to process DOM through pinocytosis without mediation of resident bacteria. Subsequent enrichment of the endosymbiotic dinoflagellates also suggests sharing of host nitrogenous wastes. Our results shed light on the physiological mechanism behind the ecologically important ability of sponges to cycle DOM via the recently described sponge loop. |
doi_str_mv | 10.1098/rspb.2019.2153 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6939258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31795848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-24c201c697bec7616a68551ff6451e4851bb2b4d4174fb139766994f75b0fa253</originalsourceid><addsrcrecordid>eNpVkMtKxDAUhoMozji6dSl5gdYkTdJmI8jgDQQX6jqkadqJZpqSZAb06W0dHXR1DvyXw_kAOMcox0hUlyEOdU4QFjnBrDgAc0xLnBHB6CGYI8FJVlFGZuAkxjeEkGAVOwazApfjRqs5aJ5t3zmTaeMc3Nq4Uc5-qmR9D23fWK2SibCxwegEg3cG-hbGwfedgSsf02iCmyGp92-hsTF6tzUN9KFTvdVwrVIy4RQctcpFc_YzF-D19uZleZ89Pt09LK8fM00LmjJC9fiJ5qKsjS455opXjOG25ZRhQyuG65rUtKG4pG2NC1FyLgRtS1ajVhFWLMDVrnfY1GvTaNOnoJwcgl2r8CG9svK_0tuV7PxWclEIwqqxIN8V6OBjDKbdZzGSE2858ZYTbznxHgMXfy_u7b-Aiy9SQ37_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Achlatis, Michelle ; Pernice, Mathieu ; Green, Kathryn ; de Goeij, Jasper M ; Guagliardo, Paul ; Kilburn, Matthew R ; Hoegh-Guldberg, Ove ; Dove, Sophie</creator><creatorcontrib>Achlatis, Michelle ; Pernice, Mathieu ; Green, Kathryn ; de Goeij, Jasper M ; Guagliardo, Paul ; Kilburn, Matthew R ; Hoegh-Guldberg, Ove ; Dove, Sophie</creatorcontrib><description>Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matter in the ocean and is recycled primarily by bacterial mediation. Little is known, however, about the mechanism that enables sponges to incorporate large quantities of DOM in their nutrition, unlike most other invertebrates. Here, we examine the cellular capacity for direct processing of DOM, and the fate of the processed matter, inside a dinoflagellate-hosting bioeroding sponge that is prominent on Indo-Pacific coral reefs. Integrating transmission electron microscopy with nanoscale secondary ion mass spectrometry, we track
N- and
C-enriched DOM over time at the individual cell level of an intact sponge holobiont. We show initial high enrichment in the filter-feeding cells of the sponge, providing visual evidence of their capacity to process DOM through pinocytosis without mediation of resident bacteria. Subsequent enrichment of the endosymbiotic dinoflagellates also suggests sharing of host nitrogenous wastes. Our results shed light on the physiological mechanism behind the ecologically important ability of sponges to cycle DOM via the recently described sponge loop.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2019.2153</identifier><identifier>PMID: 31795848</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Coral Reefs ; Dinoflagellida - physiology ; Ecology ; Nitrogen - metabolism ; Porifera - physiology ; Symbiosis</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2019-12, Vol.286 (1916), p.20192153</ispartof><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-24c201c697bec7616a68551ff6451e4851bb2b4d4174fb139766994f75b0fa253</citedby><cites>FETCH-LOGICAL-c434t-24c201c697bec7616a68551ff6451e4851bb2b4d4174fb139766994f75b0fa253</cites><orcidid>0000-0001-6390-7177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939258/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939258/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31795848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Achlatis, Michelle</creatorcontrib><creatorcontrib>Pernice, Mathieu</creatorcontrib><creatorcontrib>Green, Kathryn</creatorcontrib><creatorcontrib>de Goeij, Jasper M</creatorcontrib><creatorcontrib>Guagliardo, Paul</creatorcontrib><creatorcontrib>Kilburn, Matthew R</creatorcontrib><creatorcontrib>Hoegh-Guldberg, Ove</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><title>Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matter in the ocean and is recycled primarily by bacterial mediation. Little is known, however, about the mechanism that enables sponges to incorporate large quantities of DOM in their nutrition, unlike most other invertebrates. Here, we examine the cellular capacity for direct processing of DOM, and the fate of the processed matter, inside a dinoflagellate-hosting bioeroding sponge that is prominent on Indo-Pacific coral reefs. Integrating transmission electron microscopy with nanoscale secondary ion mass spectrometry, we track
N- and
C-enriched DOM over time at the individual cell level of an intact sponge holobiont. We show initial high enrichment in the filter-feeding cells of the sponge, providing visual evidence of their capacity to process DOM through pinocytosis without mediation of resident bacteria. Subsequent enrichment of the endosymbiotic dinoflagellates also suggests sharing of host nitrogenous wastes. Our results shed light on the physiological mechanism behind the ecologically important ability of sponges to cycle DOM via the recently described sponge loop.</description><subject>Animals</subject><subject>Coral Reefs</subject><subject>Dinoflagellida - physiology</subject><subject>Ecology</subject><subject>Nitrogen - metabolism</subject><subject>Porifera - physiology</subject><subject>Symbiosis</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtKxDAUhoMozji6dSl5gdYkTdJmI8jgDQQX6jqkadqJZpqSZAb06W0dHXR1DvyXw_kAOMcox0hUlyEOdU4QFjnBrDgAc0xLnBHB6CGYI8FJVlFGZuAkxjeEkGAVOwazApfjRqs5aJ5t3zmTaeMc3Nq4Uc5-qmR9D23fWK2SibCxwegEg3cG-hbGwfedgSsf02iCmyGp92-hsTF6tzUN9KFTvdVwrVIy4RQctcpFc_YzF-D19uZleZ89Pt09LK8fM00LmjJC9fiJ5qKsjS455opXjOG25ZRhQyuG65rUtKG4pG2NC1FyLgRtS1ajVhFWLMDVrnfY1GvTaNOnoJwcgl2r8CG9svK_0tuV7PxWclEIwqqxIN8V6OBjDKbdZzGSE2858ZYTbznxHgMXfy_u7b-Aiy9SQ37_</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Achlatis, Michelle</creator><creator>Pernice, Mathieu</creator><creator>Green, Kathryn</creator><creator>de Goeij, Jasper M</creator><creator>Guagliardo, Paul</creator><creator>Kilburn, Matthew R</creator><creator>Hoegh-Guldberg, Ove</creator><creator>Dove, Sophie</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6390-7177</orcidid></search><sort><creationdate>20191204</creationdate><title>Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter</title><author>Achlatis, Michelle ; Pernice, Mathieu ; Green, Kathryn ; de Goeij, Jasper M ; Guagliardo, Paul ; Kilburn, Matthew R ; Hoegh-Guldberg, Ove ; Dove, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-24c201c697bec7616a68551ff6451e4851bb2b4d4174fb139766994f75b0fa253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Coral Reefs</topic><topic>Dinoflagellida - physiology</topic><topic>Ecology</topic><topic>Nitrogen - metabolism</topic><topic>Porifera - physiology</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achlatis, Michelle</creatorcontrib><creatorcontrib>Pernice, Mathieu</creatorcontrib><creatorcontrib>Green, Kathryn</creatorcontrib><creatorcontrib>de Goeij, Jasper M</creatorcontrib><creatorcontrib>Guagliardo, Paul</creatorcontrib><creatorcontrib>Kilburn, Matthew R</creatorcontrib><creatorcontrib>Hoegh-Guldberg, Ove</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achlatis, Michelle</au><au>Pernice, Mathieu</au><au>Green, Kathryn</au><au>de Goeij, Jasper M</au><au>Guagliardo, Paul</au><au>Kilburn, Matthew R</au><au>Hoegh-Guldberg, Ove</au><au>Dove, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>2019-12-04</date><risdate>2019</risdate><volume>286</volume><issue>1916</issue><spage>20192153</spage><pages>20192153-</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matter in the ocean and is recycled primarily by bacterial mediation. Little is known, however, about the mechanism that enables sponges to incorporate large quantities of DOM in their nutrition, unlike most other invertebrates. Here, we examine the cellular capacity for direct processing of DOM, and the fate of the processed matter, inside a dinoflagellate-hosting bioeroding sponge that is prominent on Indo-Pacific coral reefs. Integrating transmission electron microscopy with nanoscale secondary ion mass spectrometry, we track
N- and
C-enriched DOM over time at the individual cell level of an intact sponge holobiont. We show initial high enrichment in the filter-feeding cells of the sponge, providing visual evidence of their capacity to process DOM through pinocytosis without mediation of resident bacteria. Subsequent enrichment of the endosymbiotic dinoflagellates also suggests sharing of host nitrogenous wastes. Our results shed light on the physiological mechanism behind the ecologically important ability of sponges to cycle DOM via the recently described sponge loop.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>31795848</pmid><doi>10.1098/rspb.2019.2153</doi><orcidid>https://orcid.org/0000-0001-6390-7177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2019-12, Vol.286 (1916), p.20192153 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6939258 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central |
subjects | Animals Coral Reefs Dinoflagellida - physiology Ecology Nitrogen - metabolism Porifera - physiology Symbiosis |
title | Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20visualization%20indicates%20direct%20role%20of%20sponge%20host%20in%20uptake%20of%20dissolved%20organic%20matter&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Achlatis,%20Michelle&rft.date=2019-12-04&rft.volume=286&rft.issue=1916&rft.spage=20192153&rft.pages=20192153-&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2019.2153&rft_dat=%3Cpubmed_cross%3E31795848%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31795848&rfr_iscdi=true |