Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming

The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2020-01, Vol.39 (1), p.e99165-n/a
Hauptverfasser: Chen, Keshi, Long, Qi, Xing, Guangsuo, Wang, Tianyu, Wu, Yi, Li, Linpeng, Qi, Juntao, Zhou, Yanshuang, Ma, Bochao, Schöler, Hans R, Nie, Jinfu, Pei, Duanqing, Liu, Xingguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e99165
container_title The EMBO journal
container_volume 39
creator Chen, Keshi
Long, Qi
Xing, Guangsuo
Wang, Tianyu
Wu, Yi
Li, Linpeng
Qi, Juntao
Zhou, Yanshuang
Ma, Bochao
Schöler, Hans R
Nie, Jinfu
Pei, Duanqing
Liu, Xingguo
description The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal‐to‐epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4‐L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4‐L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination. Synopsis Chromatin relaxation is required for generation of pluripotent stem cells, but how factor‐dependent chromatin opening is instructed remains poorly understood. Here, epigenetic profiling reveals Oct4 as a pioneer factor that loosens heterochromatin and cooperates with Klf4 and other chromatin remodellers during reprogramming. The Oct4 linker site L80 is required for chromatin decondensation and recruitment of Brg1. Oct4 facilitates Klf4 binding and epithelial gene expression. Oct4 reduces repressive histone marks H3K9me3 and H3K27me3. Vitamin C or Gadd45a restore the reprogramming deficiency of Oct4‐L80A. Graphical Abstract The pluripotency factor Oct4 decondenses chromatin and cooperates with Klf4 to initiate epithelial gene programs.
doi_str_mv 10.15252/embj.201899165
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6939195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331715180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5135-a6936a6706c0e810128f2af7144ce1012250a8751f3a2a3bd17d326a618a612d3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCmRuyxIVLWo8dxwkHpLIqFCgqEnC2vM4k6yWxFztLtf8eL1uWgoQ4WJY933szo0fIE2CnILnkZzguVqecQd00UMl7ZAZlxQrOlLxPZoxXUJS5dkSOU1oxxmSt4CE5EiAVcFHPiL3ECWOwyxhGMzlPhxASeud7utjSaYn02k4lHZz_ipFG7F3wtDPWDW4yEyb6fuhKunC-3UmMb6n7-GmewXUMfTTjmL8fkQedGRI-vr1PyJfXF5_nl8XV9Zu38_OrwkoQsjBVIypTKVZZhjUw4HXHTaegLC3unlwyUysJnTDciEULqhU8K6DOh7fihLzc-643ixFbi36KZtDr6EYTtzoYp_-seLfUffiuc-MGGpkNnt8axPBtg2nSo0sWh8F4DJukOW8aValKiIw--wtdhU30eT3NhQAFEmqWqbM9ZWNIKWJ3GAaY_hmg3gWoDwFmxdO7Oxz4X4ll4MUeuHEDbv_npy8-vHp3153txSnrfI_x99T_GugHaDu3kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331715180</pqid></control><display><type>article</type><title>Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming</title><source>Springer Nature OA Free Journals</source><creator>Chen, Keshi ; Long, Qi ; Xing, Guangsuo ; Wang, Tianyu ; Wu, Yi ; Li, Linpeng ; Qi, Juntao ; Zhou, Yanshuang ; Ma, Bochao ; Schöler, Hans R ; Nie, Jinfu ; Pei, Duanqing ; Liu, Xingguo</creator><creatorcontrib>Chen, Keshi ; Long, Qi ; Xing, Guangsuo ; Wang, Tianyu ; Wu, Yi ; Li, Linpeng ; Qi, Juntao ; Zhou, Yanshuang ; Ma, Bochao ; Schöler, Hans R ; Nie, Jinfu ; Pei, Duanqing ; Liu, Xingguo</creatorcontrib><description>The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal‐to‐epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4‐L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4‐L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination. Synopsis Chromatin relaxation is required for generation of pluripotent stem cells, but how factor‐dependent chromatin opening is instructed remains poorly understood. Here, epigenetic profiling reveals Oct4 as a pioneer factor that loosens heterochromatin and cooperates with Klf4 and other chromatin remodellers during reprogramming. The Oct4 linker site L80 is required for chromatin decondensation and recruitment of Brg1. Oct4 facilitates Klf4 binding and epithelial gene expression. Oct4 reduces repressive histone marks H3K9me3 and H3K27me3. Vitamin C or Gadd45a restore the reprogramming deficiency of Oct4‐L80A. Graphical Abstract The pluripotency factor Oct4 decondenses chromatin and cooperates with Klf4 to initiate epithelial gene programs.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201899165</identifier><identifier>PMID: 31571238</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Antioxidants - pharmacology ; Ascorbic acid ; Ascorbic Acid - pharmacology ; Binding ; BRG1 protein ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation ; Cell fate ; Cells, Cultured ; Cellular Reprogramming ; Chromatin ; DNA Helicases - genetics ; DNA Helicases - metabolism ; EMBO09 ; EMBO34 ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Epithelial-Mesenchymal Transition ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gadd45A protein ; Gene expression ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - metabolism ; heterochromatin loosening ; Histones - genetics ; Histones - metabolism ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Klf4 ; KLF4 protein ; Kruppel-Like Factor 4 ; Kruppel-Like Transcription Factors - genetics ; Kruppel-Like Transcription Factors - metabolism ; Loosening ; mesenchymal‐to‐epithelial transition ; Mesenchyme ; Mice ; Mutation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Oct-4 protein ; Oct4 ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; Pluripotency ; reprogramming ; Somatic cells ; Stem cells ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Vitamin C</subject><ispartof>The EMBO journal, 2020-01, Vol.39 (1), p.e99165-n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors</rights><rights>2019 The Authors.</rights><rights>2020 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5135-a6936a6706c0e810128f2af7144ce1012250a8751f3a2a3bd17d326a618a612d3</citedby><cites>FETCH-LOGICAL-c5135-a6936a6706c0e810128f2af7144ce1012250a8751f3a2a3bd17d326a618a612d3</cites><orcidid>0000-0001-7060-8204 ; 0000-0002-5222-014X ; 0000-0002-7003-0104 ; 0000-0003-4169-8268 ; 0000-0003-0402-4555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939195/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939195/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27923,27924,41119,42188,45573,45574,46408,46832,51575,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201899165$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31571238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Keshi</creatorcontrib><creatorcontrib>Long, Qi</creatorcontrib><creatorcontrib>Xing, Guangsuo</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Li, Linpeng</creatorcontrib><creatorcontrib>Qi, Juntao</creatorcontrib><creatorcontrib>Zhou, Yanshuang</creatorcontrib><creatorcontrib>Ma, Bochao</creatorcontrib><creatorcontrib>Schöler, Hans R</creatorcontrib><creatorcontrib>Nie, Jinfu</creatorcontrib><creatorcontrib>Pei, Duanqing</creatorcontrib><creatorcontrib>Liu, Xingguo</creatorcontrib><title>Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal‐to‐epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4‐L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4‐L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination. Synopsis Chromatin relaxation is required for generation of pluripotent stem cells, but how factor‐dependent chromatin opening is instructed remains poorly understood. Here, epigenetic profiling reveals Oct4 as a pioneer factor that loosens heterochromatin and cooperates with Klf4 and other chromatin remodellers during reprogramming. The Oct4 linker site L80 is required for chromatin decondensation and recruitment of Brg1. Oct4 facilitates Klf4 binding and epithelial gene expression. Oct4 reduces repressive histone marks H3K9me3 and H3K27me3. Vitamin C or Gadd45a restore the reprogramming deficiency of Oct4‐L80A. Graphical Abstract The pluripotency factor Oct4 decondenses chromatin and cooperates with Klf4 to initiate epithelial gene programs.</description><subject>Animals</subject><subject>Antioxidants - pharmacology</subject><subject>Ascorbic acid</subject><subject>Ascorbic Acid - pharmacology</subject><subject>Binding</subject><subject>BRG1 protein</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell fate</subject><subject>Cells, Cultured</subject><subject>Cellular Reprogramming</subject><subject>Chromatin</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>EMBO09</subject><subject>EMBO34</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gadd45A protein</subject><subject>Gene expression</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - metabolism</subject><subject>heterochromatin loosening</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Klf4</subject><subject>KLF4 protein</subject><subject>Kruppel-Like Factor 4</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Kruppel-Like Transcription Factors - metabolism</subject><subject>Loosening</subject><subject>mesenchymal‐to‐epithelial transition</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oct-4 protein</subject><subject>Oct4</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>Pluripotency</subject><subject>reprogramming</subject><subject>Somatic cells</subject><subject>Stem cells</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Vitamin C</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCmRuyxIVLWo8dxwkHpLIqFCgqEnC2vM4k6yWxFztLtf8eL1uWgoQ4WJY933szo0fIE2CnILnkZzguVqecQd00UMl7ZAZlxQrOlLxPZoxXUJS5dkSOU1oxxmSt4CE5EiAVcFHPiL3ECWOwyxhGMzlPhxASeud7utjSaYn02k4lHZz_ipFG7F3wtDPWDW4yEyb6fuhKunC-3UmMb6n7-GmewXUMfTTjmL8fkQedGRI-vr1PyJfXF5_nl8XV9Zu38_OrwkoQsjBVIypTKVZZhjUw4HXHTaegLC3unlwyUysJnTDciEULqhU8K6DOh7fihLzc-643ixFbi36KZtDr6EYTtzoYp_-seLfUffiuc-MGGpkNnt8axPBtg2nSo0sWh8F4DJukOW8aValKiIw--wtdhU30eT3NhQAFEmqWqbM9ZWNIKWJ3GAaY_hmg3gWoDwFmxdO7Oxz4X4ll4MUeuHEDbv_npy8-vHp3153txSnrfI_x99T_GugHaDu3kQ</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Chen, Keshi</creator><creator>Long, Qi</creator><creator>Xing, Guangsuo</creator><creator>Wang, Tianyu</creator><creator>Wu, Yi</creator><creator>Li, Linpeng</creator><creator>Qi, Juntao</creator><creator>Zhou, Yanshuang</creator><creator>Ma, Bochao</creator><creator>Schöler, Hans R</creator><creator>Nie, Jinfu</creator><creator>Pei, Duanqing</creator><creator>Liu, Xingguo</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7060-8204</orcidid><orcidid>https://orcid.org/0000-0002-5222-014X</orcidid><orcidid>https://orcid.org/0000-0002-7003-0104</orcidid><orcidid>https://orcid.org/0000-0003-4169-8268</orcidid><orcidid>https://orcid.org/0000-0003-0402-4555</orcidid></search><sort><creationdate>20200102</creationdate><title>Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming</title><author>Chen, Keshi ; Long, Qi ; Xing, Guangsuo ; Wang, Tianyu ; Wu, Yi ; Li, Linpeng ; Qi, Juntao ; Zhou, Yanshuang ; Ma, Bochao ; Schöler, Hans R ; Nie, Jinfu ; Pei, Duanqing ; Liu, Xingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5135-a6936a6706c0e810128f2af7144ce1012250a8751f3a2a3bd17d326a618a612d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antioxidants - pharmacology</topic><topic>Ascorbic acid</topic><topic>Ascorbic Acid - pharmacology</topic><topic>Binding</topic><topic>BRG1 protein</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell fate</topic><topic>Cells, Cultured</topic><topic>Cellular Reprogramming</topic><topic>Chromatin</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>EMBO09</topic><topic>EMBO34</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gadd45A protein</topic><topic>Gene expression</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - metabolism</topic><topic>heterochromatin loosening</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Klf4</topic><topic>KLF4 protein</topic><topic>Kruppel-Like Factor 4</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Kruppel-Like Transcription Factors - metabolism</topic><topic>Loosening</topic><topic>mesenchymal‐to‐epithelial transition</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oct-4 protein</topic><topic>Oct4</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>Pluripotency</topic><topic>reprogramming</topic><topic>Somatic cells</topic><topic>Stem cells</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Keshi</creatorcontrib><creatorcontrib>Long, Qi</creatorcontrib><creatorcontrib>Xing, Guangsuo</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Li, Linpeng</creatorcontrib><creatorcontrib>Qi, Juntao</creatorcontrib><creatorcontrib>Zhou, Yanshuang</creatorcontrib><creatorcontrib>Ma, Bochao</creatorcontrib><creatorcontrib>Schöler, Hans R</creatorcontrib><creatorcontrib>Nie, Jinfu</creatorcontrib><creatorcontrib>Pei, Duanqing</creatorcontrib><creatorcontrib>Liu, Xingguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Keshi</au><au>Long, Qi</au><au>Xing, Guangsuo</au><au>Wang, Tianyu</au><au>Wu, Yi</au><au>Li, Linpeng</au><au>Qi, Juntao</au><au>Zhou, Yanshuang</au><au>Ma, Bochao</au><au>Schöler, Hans R</au><au>Nie, Jinfu</au><au>Pei, Duanqing</au><au>Liu, Xingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><spage>e99165</spage><epage>n/a</epage><pages>e99165-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal‐to‐epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4‐L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4‐L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination. Synopsis Chromatin relaxation is required for generation of pluripotent stem cells, but how factor‐dependent chromatin opening is instructed remains poorly understood. Here, epigenetic profiling reveals Oct4 as a pioneer factor that loosens heterochromatin and cooperates with Klf4 and other chromatin remodellers during reprogramming. The Oct4 linker site L80 is required for chromatin decondensation and recruitment of Brg1. Oct4 facilitates Klf4 binding and epithelial gene expression. Oct4 reduces repressive histone marks H3K9me3 and H3K27me3. Vitamin C or Gadd45a restore the reprogramming deficiency of Oct4‐L80A. Graphical Abstract The pluripotency factor Oct4 decondenses chromatin and cooperates with Klf4 to initiate epithelial gene programs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31571238</pmid><doi>10.15252/embj.201899165</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7060-8204</orcidid><orcidid>https://orcid.org/0000-0002-5222-014X</orcidid><orcidid>https://orcid.org/0000-0002-7003-0104</orcidid><orcidid>https://orcid.org/0000-0003-4169-8268</orcidid><orcidid>https://orcid.org/0000-0003-0402-4555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-01, Vol.39 (1), p.e99165-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6939195
source Springer Nature OA Free Journals
subjects Animals
Antioxidants - pharmacology
Ascorbic acid
Ascorbic Acid - pharmacology
Binding
BRG1 protein
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Differentiation
Cell fate
Cells, Cultured
Cellular Reprogramming
Chromatin
DNA Helicases - genetics
DNA Helicases - metabolism
EMBO09
EMBO34
Epithelial Cells - cytology
Epithelial Cells - metabolism
Epithelial-Mesenchymal Transition
Fibroblasts - cytology
Fibroblasts - metabolism
Gadd45A protein
Gene expression
Heterochromatin
Heterochromatin - genetics
Heterochromatin - metabolism
heterochromatin loosening
Histones - genetics
Histones - metabolism
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Klf4
KLF4 protein
Kruppel-Like Factor 4
Kruppel-Like Transcription Factors - genetics
Kruppel-Like Transcription Factors - metabolism
Loosening
mesenchymal‐to‐epithelial transition
Mesenchyme
Mice
Mutation
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Oct-4 protein
Oct4
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - metabolism
Pluripotency
reprogramming
Somatic cells
Stem cells
Transcription Factors - genetics
Transcription Factors - metabolism
Vitamin C
title Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterochromatin%20loosening%20by%20the%20Oct4%20linker%20region%20facilitates%20Klf4%20binding%20and%20iPSC%20reprogramming&rft.jtitle=The%20EMBO%20journal&rft.au=Chen,%20Keshi&rft.date=2020-01-02&rft.volume=39&rft.issue=1&rft.spage=e99165&rft.epage=n/a&rft.pages=e99165-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.201899165&rft_dat=%3Cproquest_C6C%3E2331715180%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331715180&rft_id=info:pmid/31571238&rfr_iscdi=true