Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming
The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2020-01, Vol.39 (1), p.e99165-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e99165 |
container_title | The EMBO journal |
container_volume | 39 |
creator | Chen, Keshi Long, Qi Xing, Guangsuo Wang, Tianyu Wu, Yi Li, Linpeng Qi, Juntao Zhou, Yanshuang Ma, Bochao Schöler, Hans R Nie, Jinfu Pei, Duanqing Liu, Xingguo |
description | The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal‐to‐epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4‐L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4‐L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.
Synopsis
Chromatin relaxation is required for generation of pluripotent stem cells, but how factor‐dependent chromatin opening is instructed remains poorly understood. Here, epigenetic profiling reveals Oct4 as a pioneer factor that loosens heterochromatin and cooperates with Klf4 and other chromatin remodellers during reprogramming.
The Oct4 linker site L80 is required for chromatin decondensation and recruitment of Brg1.
Oct4 facilitates Klf4 binding and epithelial gene expression.
Oct4 reduces repressive histone marks H3K9me3 and H3K27me3.
Vitamin C or Gadd45a restore the reprogramming deficiency of Oct4‐L80A.
Graphical Abstract
The pluripotency factor Oct4 decondenses chromatin and cooperates with Klf4 to initiate epithelial gene programs. |
doi_str_mv | 10.15252/embj.201899165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6939195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331715180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5135-a6936a6706c0e810128f2af7144ce1012250a8751f3a2a3bd17d326a618a612d3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCmRuyxIVLWo8dxwkHpLIqFCgqEnC2vM4k6yWxFztLtf8eL1uWgoQ4WJY933szo0fIE2CnILnkZzguVqecQd00UMl7ZAZlxQrOlLxPZoxXUJS5dkSOU1oxxmSt4CE5EiAVcFHPiL3ECWOwyxhGMzlPhxASeud7utjSaYn02k4lHZz_ipFG7F3wtDPWDW4yEyb6fuhKunC-3UmMb6n7-GmewXUMfTTjmL8fkQedGRI-vr1PyJfXF5_nl8XV9Zu38_OrwkoQsjBVIypTKVZZhjUw4HXHTaegLC3unlwyUysJnTDciEULqhU8K6DOh7fihLzc-643ixFbi36KZtDr6EYTtzoYp_-seLfUffiuc-MGGpkNnt8axPBtg2nSo0sWh8F4DJukOW8aValKiIw--wtdhU30eT3NhQAFEmqWqbM9ZWNIKWJ3GAaY_hmg3gWoDwFmxdO7Oxz4X4ll4MUeuHEDbv_npy8-vHp3153txSnrfI_x99T_GugHaDu3kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331715180</pqid></control><display><type>article</type><title>Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming</title><source>Springer Nature OA Free Journals</source><creator>Chen, Keshi ; Long, Qi ; Xing, Guangsuo ; Wang, Tianyu ; Wu, Yi ; Li, Linpeng ; Qi, Juntao ; Zhou, Yanshuang ; Ma, Bochao ; Schöler, Hans R ; Nie, Jinfu ; Pei, Duanqing ; Liu, Xingguo</creator><creatorcontrib>Chen, Keshi ; Long, Qi ; Xing, Guangsuo ; Wang, Tianyu ; Wu, Yi ; Li, Linpeng ; Qi, Juntao ; Zhou, Yanshuang ; Ma, Bochao ; Schöler, Hans R ; Nie, Jinfu ; Pei, Duanqing ; Liu, Xingguo</creatorcontrib><description>The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal‐to‐epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4‐L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4‐L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.
Synopsis
Chromatin relaxation is required for generation of pluripotent stem cells, but how factor‐dependent chromatin opening is instructed remains poorly understood. Here, epigenetic profiling reveals Oct4 as a pioneer factor that loosens heterochromatin and cooperates with Klf4 and other chromatin remodellers during reprogramming.
The Oct4 linker site L80 is required for chromatin decondensation and recruitment of Brg1.
Oct4 facilitates Klf4 binding and epithelial gene expression.
Oct4 reduces repressive histone marks H3K9me3 and H3K27me3.
Vitamin C or Gadd45a restore the reprogramming deficiency of Oct4‐L80A.
Graphical Abstract
The pluripotency factor Oct4 decondenses chromatin and cooperates with Klf4 to initiate epithelial gene programs.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201899165</identifier><identifier>PMID: 31571238</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Antioxidants - pharmacology ; Ascorbic acid ; Ascorbic Acid - pharmacology ; Binding ; BRG1 protein ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation ; Cell fate ; Cells, Cultured ; Cellular Reprogramming ; Chromatin ; DNA Helicases - genetics ; DNA Helicases - metabolism ; EMBO09 ; EMBO34 ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Epithelial-Mesenchymal Transition ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gadd45A protein ; Gene expression ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - metabolism ; heterochromatin loosening ; Histones - genetics ; Histones - metabolism ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Klf4 ; KLF4 protein ; Kruppel-Like Factor 4 ; Kruppel-Like Transcription Factors - genetics ; Kruppel-Like Transcription Factors - metabolism ; Loosening ; mesenchymal‐to‐epithelial transition ; Mesenchyme ; Mice ; Mutation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Oct-4 protein ; Oct4 ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; Pluripotency ; reprogramming ; Somatic cells ; Stem cells ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Vitamin C</subject><ispartof>The EMBO journal, 2020-01, Vol.39 (1), p.e99165-n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors</rights><rights>2019 The Authors.</rights><rights>2020 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5135-a6936a6706c0e810128f2af7144ce1012250a8751f3a2a3bd17d326a618a612d3</citedby><cites>FETCH-LOGICAL-c5135-a6936a6706c0e810128f2af7144ce1012250a8751f3a2a3bd17d326a618a612d3</cites><orcidid>0000-0001-7060-8204 ; 0000-0002-5222-014X ; 0000-0002-7003-0104 ; 0000-0003-4169-8268 ; 0000-0003-0402-4555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939195/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939195/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27923,27924,41119,42188,45573,45574,46408,46832,51575,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201899165$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31571238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Keshi</creatorcontrib><creatorcontrib>Long, Qi</creatorcontrib><creatorcontrib>Xing, Guangsuo</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Li, Linpeng</creatorcontrib><creatorcontrib>Qi, Juntao</creatorcontrib><creatorcontrib>Zhou, Yanshuang</creatorcontrib><creatorcontrib>Ma, Bochao</creatorcontrib><creatorcontrib>Schöler, Hans R</creatorcontrib><creatorcontrib>Nie, Jinfu</creatorcontrib><creatorcontrib>Pei, Duanqing</creatorcontrib><creatorcontrib>Liu, Xingguo</creatorcontrib><title>Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal‐to‐epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4‐L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4‐L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.
Synopsis
Chromatin relaxation is required for generation of pluripotent stem cells, but how factor‐dependent chromatin opening is instructed remains poorly understood. Here, epigenetic profiling reveals Oct4 as a pioneer factor that loosens heterochromatin and cooperates with Klf4 and other chromatin remodellers during reprogramming.
The Oct4 linker site L80 is required for chromatin decondensation and recruitment of Brg1.
Oct4 facilitates Klf4 binding and epithelial gene expression.
Oct4 reduces repressive histone marks H3K9me3 and H3K27me3.
Vitamin C or Gadd45a restore the reprogramming deficiency of Oct4‐L80A.
Graphical Abstract
The pluripotency factor Oct4 decondenses chromatin and cooperates with Klf4 to initiate epithelial gene programs.</description><subject>Animals</subject><subject>Antioxidants - pharmacology</subject><subject>Ascorbic acid</subject><subject>Ascorbic Acid - pharmacology</subject><subject>Binding</subject><subject>BRG1 protein</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell fate</subject><subject>Cells, Cultured</subject><subject>Cellular Reprogramming</subject><subject>Chromatin</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>EMBO09</subject><subject>EMBO34</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gadd45A protein</subject><subject>Gene expression</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - metabolism</subject><subject>heterochromatin loosening</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Klf4</subject><subject>KLF4 protein</subject><subject>Kruppel-Like Factor 4</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Kruppel-Like Transcription Factors - metabolism</subject><subject>Loosening</subject><subject>mesenchymal‐to‐epithelial transition</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oct-4 protein</subject><subject>Oct4</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>Pluripotency</subject><subject>reprogramming</subject><subject>Somatic cells</subject><subject>Stem cells</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Vitamin C</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCmRuyxIVLWo8dxwkHpLIqFCgqEnC2vM4k6yWxFztLtf8eL1uWgoQ4WJY933szo0fIE2CnILnkZzguVqecQd00UMl7ZAZlxQrOlLxPZoxXUJS5dkSOU1oxxmSt4CE5EiAVcFHPiL3ECWOwyxhGMzlPhxASeud7utjSaYn02k4lHZz_ipFG7F3wtDPWDW4yEyb6fuhKunC-3UmMb6n7-GmewXUMfTTjmL8fkQedGRI-vr1PyJfXF5_nl8XV9Zu38_OrwkoQsjBVIypTKVZZhjUw4HXHTaegLC3unlwyUysJnTDciEULqhU8K6DOh7fihLzc-643ixFbi36KZtDr6EYTtzoYp_-seLfUffiuc-MGGpkNnt8axPBtg2nSo0sWh8F4DJukOW8aValKiIw--wtdhU30eT3NhQAFEmqWqbM9ZWNIKWJ3GAaY_hmg3gWoDwFmxdO7Oxz4X4ll4MUeuHEDbv_npy8-vHp3153txSnrfI_x99T_GugHaDu3kQ</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Chen, Keshi</creator><creator>Long, Qi</creator><creator>Xing, Guangsuo</creator><creator>Wang, Tianyu</creator><creator>Wu, Yi</creator><creator>Li, Linpeng</creator><creator>Qi, Juntao</creator><creator>Zhou, Yanshuang</creator><creator>Ma, Bochao</creator><creator>Schöler, Hans R</creator><creator>Nie, Jinfu</creator><creator>Pei, Duanqing</creator><creator>Liu, Xingguo</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7060-8204</orcidid><orcidid>https://orcid.org/0000-0002-5222-014X</orcidid><orcidid>https://orcid.org/0000-0002-7003-0104</orcidid><orcidid>https://orcid.org/0000-0003-4169-8268</orcidid><orcidid>https://orcid.org/0000-0003-0402-4555</orcidid></search><sort><creationdate>20200102</creationdate><title>Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming</title><author>Chen, Keshi ; Long, Qi ; Xing, Guangsuo ; Wang, Tianyu ; Wu, Yi ; Li, Linpeng ; Qi, Juntao ; Zhou, Yanshuang ; Ma, Bochao ; Schöler, Hans R ; Nie, Jinfu ; Pei, Duanqing ; Liu, Xingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5135-a6936a6706c0e810128f2af7144ce1012250a8751f3a2a3bd17d326a618a612d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antioxidants - pharmacology</topic><topic>Ascorbic acid</topic><topic>Ascorbic Acid - pharmacology</topic><topic>Binding</topic><topic>BRG1 protein</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell fate</topic><topic>Cells, Cultured</topic><topic>Cellular Reprogramming</topic><topic>Chromatin</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>EMBO09</topic><topic>EMBO34</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gadd45A protein</topic><topic>Gene expression</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - metabolism</topic><topic>heterochromatin loosening</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Klf4</topic><topic>KLF4 protein</topic><topic>Kruppel-Like Factor 4</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Kruppel-Like Transcription Factors - metabolism</topic><topic>Loosening</topic><topic>mesenchymal‐to‐epithelial transition</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oct-4 protein</topic><topic>Oct4</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>Pluripotency</topic><topic>reprogramming</topic><topic>Somatic cells</topic><topic>Stem cells</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Keshi</creatorcontrib><creatorcontrib>Long, Qi</creatorcontrib><creatorcontrib>Xing, Guangsuo</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Li, Linpeng</creatorcontrib><creatorcontrib>Qi, Juntao</creatorcontrib><creatorcontrib>Zhou, Yanshuang</creatorcontrib><creatorcontrib>Ma, Bochao</creatorcontrib><creatorcontrib>Schöler, Hans R</creatorcontrib><creatorcontrib>Nie, Jinfu</creatorcontrib><creatorcontrib>Pei, Duanqing</creatorcontrib><creatorcontrib>Liu, Xingguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Keshi</au><au>Long, Qi</au><au>Xing, Guangsuo</au><au>Wang, Tianyu</au><au>Wu, Yi</au><au>Li, Linpeng</au><au>Qi, Juntao</au><au>Zhou, Yanshuang</au><au>Ma, Bochao</au><au>Schöler, Hans R</au><au>Nie, Jinfu</au><au>Pei, Duanqing</au><au>Liu, Xingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><spage>e99165</spage><epage>n/a</epage><pages>e99165-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor‐dependent chromatin opening occurs remains unclear. Using FRAP and ATAC‐seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal‐to‐epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4‐L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4‐L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.
Synopsis
Chromatin relaxation is required for generation of pluripotent stem cells, but how factor‐dependent chromatin opening is instructed remains poorly understood. Here, epigenetic profiling reveals Oct4 as a pioneer factor that loosens heterochromatin and cooperates with Klf4 and other chromatin remodellers during reprogramming.
The Oct4 linker site L80 is required for chromatin decondensation and recruitment of Brg1.
Oct4 facilitates Klf4 binding and epithelial gene expression.
Oct4 reduces repressive histone marks H3K9me3 and H3K27me3.
Vitamin C or Gadd45a restore the reprogramming deficiency of Oct4‐L80A.
Graphical Abstract
The pluripotency factor Oct4 decondenses chromatin and cooperates with Klf4 to initiate epithelial gene programs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31571238</pmid><doi>10.15252/embj.201899165</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7060-8204</orcidid><orcidid>https://orcid.org/0000-0002-5222-014X</orcidid><orcidid>https://orcid.org/0000-0002-7003-0104</orcidid><orcidid>https://orcid.org/0000-0003-4169-8268</orcidid><orcidid>https://orcid.org/0000-0003-0402-4555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2020-01, Vol.39 (1), p.e99165-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6939195 |
source | Springer Nature OA Free Journals |
subjects | Animals Antioxidants - pharmacology Ascorbic acid Ascorbic Acid - pharmacology Binding BRG1 protein Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Differentiation Cell fate Cells, Cultured Cellular Reprogramming Chromatin DNA Helicases - genetics DNA Helicases - metabolism EMBO09 EMBO34 Epithelial Cells - cytology Epithelial Cells - metabolism Epithelial-Mesenchymal Transition Fibroblasts - cytology Fibroblasts - metabolism Gadd45A protein Gene expression Heterochromatin Heterochromatin - genetics Heterochromatin - metabolism heterochromatin loosening Histones - genetics Histones - metabolism Humans Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Klf4 KLF4 protein Kruppel-Like Factor 4 Kruppel-Like Transcription Factors - genetics Kruppel-Like Transcription Factors - metabolism Loosening mesenchymal‐to‐epithelial transition Mesenchyme Mice Mutation Nuclear Proteins - genetics Nuclear Proteins - metabolism Oct-4 protein Oct4 Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism Pluripotency reprogramming Somatic cells Stem cells Transcription Factors - genetics Transcription Factors - metabolism Vitamin C |
title | Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterochromatin%20loosening%20by%20the%20Oct4%20linker%20region%20facilitates%20Klf4%20binding%20and%20iPSC%20reprogramming&rft.jtitle=The%20EMBO%20journal&rft.au=Chen,%20Keshi&rft.date=2020-01-02&rft.volume=39&rft.issue=1&rft.spage=e99165&rft.epage=n/a&rft.pages=e99165-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.201899165&rft_dat=%3Cproquest_C6C%3E2331715180%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331715180&rft_id=info:pmid/31571238&rfr_iscdi=true |