Notch3 promotes prostate cancer-induced bone lesion development via MMP-3

Prostate cancer metastases primarily localize in the bone where they induce a unique osteoblastic response. Elevated Notch activity is associated with high-grade disease and metastasis. To address how Notch affects prostate cancer bone lesions, we manipulated Notch expression in mouse tibia xenograf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2020-01, Vol.39 (1), p.204-218
Hauptverfasser: Ganguly, Sourik S., Hostetter, Galen, Tang, Lin, Frank, Sander B., Saboda, Kathylynn, Mehra, Rohit, Wang, Lisha, Li, Xiaohong, Keller, Evan T., Miranti, Cindy K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue 1
container_start_page 204
container_title Oncogene
container_volume 39
creator Ganguly, Sourik S.
Hostetter, Galen
Tang, Lin
Frank, Sander B.
Saboda, Kathylynn
Mehra, Rohit
Wang, Lisha
Li, Xiaohong
Keller, Evan T.
Miranti, Cindy K.
description Prostate cancer metastases primarily localize in the bone where they induce a unique osteoblastic response. Elevated Notch activity is associated with high-grade disease and metastasis. To address how Notch affects prostate cancer bone lesions, we manipulated Notch expression in mouse tibia xenografts and monitored tumor growth, lesion phenotype, and the bone microenvironment. Prostate cancer cell lines that induce mixed osteoblastic lesions in bone expressed 5–6 times more Notch3, than tumor cells that produce osteolytic lesions. Expression of active Notch3 (NICD3) in osteolytic tumors reduced osteolytic lesion area and enhanced osteoblastogenesis, while loss of Notch3 in osteoblastic tumors enhanced osteolytic lesion area and decreased osteoblastogensis. This was accompanied by a respective decrease and increase in the number of active osteoclasts and osteoblasts at the tumor–bone interface, without any effect on tumor proliferation. Conditioned medium from NICD3-expressing cells enhanced osteoblast differentiation and proliferation in vitro, while simultaneously inhibiting osteoclastogenesis. MMP-3 was specifically elevated and secreted by NICD3-expressing tumors, and inhibition of MMP-3 rescued the NICD3-induced osteoblastic phenotypes. Clinical osteoblastic bone metastasis samples had higher levels of Notch3 and MMP-3 compared with patient matched visceral metastases or osteolytic metastasis samples. We identified a Notch3–MMP-3 axis in human prostate cancer bone metastases that contributes to osteoblastic lesion formation by blocking osteoclast differentiation, while also contributing to osteoblastogenesis. These studies define a new role for Notch3 in manipulating the tumor microenvironment in bone metastases.
doi_str_mv 10.1038/s41388-019-0977-1
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6938550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610147976</galeid><sourcerecordid>A610147976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-6d1dbf075021f151e4f09cd9540b944d840da62d06f9f6f409de2ef8b1b8b1bf3</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQtRCILoUfwAVF4sLFZfyVxBekquKjUgsc4Gw59nibKrGXOFmp_x5HW1qKAFmWLc-b55k3j5CXDE4YiPZtlky0LQWmKeimoewR2TDZ1FQpLR-TDWgFVHPBj8iznK8BoNHAn5IjwWTdSME35Pxzmt2VqHZTGtOMeb3k2c5YORsdTrSPfnHoqy5FrAbMfYqVxz0OaTdinKt9b6vLy69UPCdPgh0yvrg9j8n3D--_nX2iF18-np-dXlCnajXT2jPfBWgUcBaYYigDaOe1ktBpKX0rwduae6iDDnWQoD1yDG3HunUHcUzeHXh3Szeid6WIyQ5mN_WjnW5Msr15GIn9ldmmvam1aJWCQvDmlmBKPxbMsxn77HAYbMS0ZMN5K1hRSrACff0H9DotUyztGV50biQIVv8XJYrUTKu2uUdt7YCmjyGV6tz6tTmtGZS56WblOvkLqiyPY-_KDEJf3h8ksEOCK4PLE4Y7JRiY1SXm4BJTXGJWl5i1rVe_S3iX8csWBcAPgFxCcYvTfUf_Zv0JSg7FTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331419587</pqid></control><display><type>article</type><title>Notch3 promotes prostate cancer-induced bone lesion development via MMP-3</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ganguly, Sourik S. ; Hostetter, Galen ; Tang, Lin ; Frank, Sander B. ; Saboda, Kathylynn ; Mehra, Rohit ; Wang, Lisha ; Li, Xiaohong ; Keller, Evan T. ; Miranti, Cindy K.</creator><creatorcontrib>Ganguly, Sourik S. ; Hostetter, Galen ; Tang, Lin ; Frank, Sander B. ; Saboda, Kathylynn ; Mehra, Rohit ; Wang, Lisha ; Li, Xiaohong ; Keller, Evan T. ; Miranti, Cindy K.</creatorcontrib><description>Prostate cancer metastases primarily localize in the bone where they induce a unique osteoblastic response. Elevated Notch activity is associated with high-grade disease and metastasis. To address how Notch affects prostate cancer bone lesions, we manipulated Notch expression in mouse tibia xenografts and monitored tumor growth, lesion phenotype, and the bone microenvironment. Prostate cancer cell lines that induce mixed osteoblastic lesions in bone expressed 5–6 times more Notch3, than tumor cells that produce osteolytic lesions. Expression of active Notch3 (NICD3) in osteolytic tumors reduced osteolytic lesion area and enhanced osteoblastogenesis, while loss of Notch3 in osteoblastic tumors enhanced osteolytic lesion area and decreased osteoblastogensis. This was accompanied by a respective decrease and increase in the number of active osteoclasts and osteoblasts at the tumor–bone interface, without any effect on tumor proliferation. Conditioned medium from NICD3-expressing cells enhanced osteoblast differentiation and proliferation in vitro, while simultaneously inhibiting osteoclastogenesis. MMP-3 was specifically elevated and secreted by NICD3-expressing tumors, and inhibition of MMP-3 rescued the NICD3-induced osteoblastic phenotypes. Clinical osteoblastic bone metastasis samples had higher levels of Notch3 and MMP-3 compared with patient matched visceral metastases or osteolytic metastasis samples. We identified a Notch3–MMP-3 axis in human prostate cancer bone metastases that contributes to osteoblastic lesion formation by blocking osteoclast differentiation, while also contributing to osteoblastogenesis. These studies define a new role for Notch3 in manipulating the tumor microenvironment in bone metastases.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-019-0977-1</identifier><identifier>PMID: 31467432</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/105 ; 13/21 ; 13/51 ; 13/89 ; 38/77 ; 631/67/322 ; 631/80 ; 64 ; 64/60 ; 82 ; 82/1 ; 82/80 ; Animals ; Apoptosis ; B cells ; Bone cancer ; Bone lesions ; Bone Neoplasms - genetics ; Bone Neoplasms - pathology ; Bone Neoplasms - secondary ; Cell Biology ; Cell differentiation ; Cell Differentiation - genetics ; Cell Line, Tumor ; Cell proliferation ; Gene Expression Regulation, Neoplastic - genetics ; Heterografts ; Human Genetics ; Humans ; Internal Medicine ; Male ; Matrix Metalloproteinase 3 - genetics ; Medicine ; Medicine &amp; Public Health ; Metastases ; Metastasis ; Mice ; Neoplasm Metastasis ; Oncology ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Osteoclastogenesis ; Osteoclasts ; Osteoclasts - metabolism ; Osteoclasts - pathology ; Osteogenesis - genetics ; Osteolysis ; Phenotypes ; Prostate cancer ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - pathology ; Receptor, Notch3 - genetics ; Signal Transduction - genetics ; Tibia ; Tumor cell lines ; Tumor cells ; Tumor microenvironment ; Tumors ; Xenografts</subject><ispartof>Oncogene, 2020-01, Vol.39 (1), p.204-218</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-6d1dbf075021f151e4f09cd9540b944d840da62d06f9f6f409de2ef8b1b8b1bf3</citedby><cites>FETCH-LOGICAL-c565t-6d1dbf075021f151e4f09cd9540b944d840da62d06f9f6f409de2ef8b1b8b1bf3</cites><orcidid>0000-0003-0668-6106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-019-0977-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-019-0977-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31467432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganguly, Sourik S.</creatorcontrib><creatorcontrib>Hostetter, Galen</creatorcontrib><creatorcontrib>Tang, Lin</creatorcontrib><creatorcontrib>Frank, Sander B.</creatorcontrib><creatorcontrib>Saboda, Kathylynn</creatorcontrib><creatorcontrib>Mehra, Rohit</creatorcontrib><creatorcontrib>Wang, Lisha</creatorcontrib><creatorcontrib>Li, Xiaohong</creatorcontrib><creatorcontrib>Keller, Evan T.</creatorcontrib><creatorcontrib>Miranti, Cindy K.</creatorcontrib><title>Notch3 promotes prostate cancer-induced bone lesion development via MMP-3</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Prostate cancer metastases primarily localize in the bone where they induce a unique osteoblastic response. Elevated Notch activity is associated with high-grade disease and metastasis. To address how Notch affects prostate cancer bone lesions, we manipulated Notch expression in mouse tibia xenografts and monitored tumor growth, lesion phenotype, and the bone microenvironment. Prostate cancer cell lines that induce mixed osteoblastic lesions in bone expressed 5–6 times more Notch3, than tumor cells that produce osteolytic lesions. Expression of active Notch3 (NICD3) in osteolytic tumors reduced osteolytic lesion area and enhanced osteoblastogenesis, while loss of Notch3 in osteoblastic tumors enhanced osteolytic lesion area and decreased osteoblastogensis. This was accompanied by a respective decrease and increase in the number of active osteoclasts and osteoblasts at the tumor–bone interface, without any effect on tumor proliferation. Conditioned medium from NICD3-expressing cells enhanced osteoblast differentiation and proliferation in vitro, while simultaneously inhibiting osteoclastogenesis. MMP-3 was specifically elevated and secreted by NICD3-expressing tumors, and inhibition of MMP-3 rescued the NICD3-induced osteoblastic phenotypes. Clinical osteoblastic bone metastasis samples had higher levels of Notch3 and MMP-3 compared with patient matched visceral metastases or osteolytic metastasis samples. We identified a Notch3–MMP-3 axis in human prostate cancer bone metastases that contributes to osteoblastic lesion formation by blocking osteoclast differentiation, while also contributing to osteoblastogenesis. These studies define a new role for Notch3 in manipulating the tumor microenvironment in bone metastases.</description><subject>13</subject><subject>13/105</subject><subject>13/21</subject><subject>13/51</subject><subject>13/89</subject><subject>38/77</subject><subject>631/67/322</subject><subject>631/80</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/1</subject><subject>82/80</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>B cells</subject><subject>Bone cancer</subject><subject>Bone lesions</subject><subject>Bone Neoplasms - genetics</subject><subject>Bone Neoplasms - pathology</subject><subject>Bone Neoplasms - secondary</subject><subject>Cell Biology</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Heterografts</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Matrix Metalloproteinase 3 - genetics</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Neoplasm Metastasis</subject><subject>Oncology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteoclasts - metabolism</subject><subject>Osteoclasts - pathology</subject><subject>Osteogenesis - genetics</subject><subject>Osteolysis</subject><subject>Phenotypes</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Receptor, Notch3 - genetics</subject><subject>Signal Transduction - genetics</subject><subject>Tibia</subject><subject>Tumor cell lines</subject><subject>Tumor cells</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9Uk1v1DAQtRCILoUfwAVF4sLFZfyVxBekquKjUgsc4Gw59nibKrGXOFmp_x5HW1qKAFmWLc-b55k3j5CXDE4YiPZtlky0LQWmKeimoewR2TDZ1FQpLR-TDWgFVHPBj8iznK8BoNHAn5IjwWTdSME35Pxzmt2VqHZTGtOMeb3k2c5YORsdTrSPfnHoqy5FrAbMfYqVxz0OaTdinKt9b6vLy69UPCdPgh0yvrg9j8n3D--_nX2iF18-np-dXlCnajXT2jPfBWgUcBaYYigDaOe1ktBpKX0rwduae6iDDnWQoD1yDG3HunUHcUzeHXh3Szeid6WIyQ5mN_WjnW5Msr15GIn9ldmmvam1aJWCQvDmlmBKPxbMsxn77HAYbMS0ZMN5K1hRSrACff0H9DotUyztGV50biQIVv8XJYrUTKu2uUdt7YCmjyGV6tz6tTmtGZS56WblOvkLqiyPY-_KDEJf3h8ksEOCK4PLE4Y7JRiY1SXm4BJTXGJWl5i1rVe_S3iX8csWBcAPgFxCcYvTfUf_Zv0JSg7FTw</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Ganguly, Sourik S.</creator><creator>Hostetter, Galen</creator><creator>Tang, Lin</creator><creator>Frank, Sander B.</creator><creator>Saboda, Kathylynn</creator><creator>Mehra, Rohit</creator><creator>Wang, Lisha</creator><creator>Li, Xiaohong</creator><creator>Keller, Evan T.</creator><creator>Miranti, Cindy K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0668-6106</orcidid></search><sort><creationdate>20200102</creationdate><title>Notch3 promotes prostate cancer-induced bone lesion development via MMP-3</title><author>Ganguly, Sourik S. ; Hostetter, Galen ; Tang, Lin ; Frank, Sander B. ; Saboda, Kathylynn ; Mehra, Rohit ; Wang, Lisha ; Li, Xiaohong ; Keller, Evan T. ; Miranti, Cindy K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-6d1dbf075021f151e4f09cd9540b944d840da62d06f9f6f409de2ef8b1b8b1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>13/105</topic><topic>13/21</topic><topic>13/51</topic><topic>13/89</topic><topic>38/77</topic><topic>631/67/322</topic><topic>631/80</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/1</topic><topic>82/80</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>B cells</topic><topic>Bone cancer</topic><topic>Bone lesions</topic><topic>Bone Neoplasms - genetics</topic><topic>Bone Neoplasms - pathology</topic><topic>Bone Neoplasms - secondary</topic><topic>Cell Biology</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Heterografts</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Matrix Metalloproteinase 3 - genetics</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Neoplasm Metastasis</topic><topic>Oncology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteoclasts - metabolism</topic><topic>Osteoclasts - pathology</topic><topic>Osteogenesis - genetics</topic><topic>Osteolysis</topic><topic>Phenotypes</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Receptor, Notch3 - genetics</topic><topic>Signal Transduction - genetics</topic><topic>Tibia</topic><topic>Tumor cell lines</topic><topic>Tumor cells</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganguly, Sourik S.</creatorcontrib><creatorcontrib>Hostetter, Galen</creatorcontrib><creatorcontrib>Tang, Lin</creatorcontrib><creatorcontrib>Frank, Sander B.</creatorcontrib><creatorcontrib>Saboda, Kathylynn</creatorcontrib><creatorcontrib>Mehra, Rohit</creatorcontrib><creatorcontrib>Wang, Lisha</creatorcontrib><creatorcontrib>Li, Xiaohong</creatorcontrib><creatorcontrib>Keller, Evan T.</creatorcontrib><creatorcontrib>Miranti, Cindy K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganguly, Sourik S.</au><au>Hostetter, Galen</au><au>Tang, Lin</au><au>Frank, Sander B.</au><au>Saboda, Kathylynn</au><au>Mehra, Rohit</au><au>Wang, Lisha</au><au>Li, Xiaohong</au><au>Keller, Evan T.</au><au>Miranti, Cindy K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notch3 promotes prostate cancer-induced bone lesion development via MMP-3</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><spage>204</spage><epage>218</epage><pages>204-218</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Prostate cancer metastases primarily localize in the bone where they induce a unique osteoblastic response. Elevated Notch activity is associated with high-grade disease and metastasis. To address how Notch affects prostate cancer bone lesions, we manipulated Notch expression in mouse tibia xenografts and monitored tumor growth, lesion phenotype, and the bone microenvironment. Prostate cancer cell lines that induce mixed osteoblastic lesions in bone expressed 5–6 times more Notch3, than tumor cells that produce osteolytic lesions. Expression of active Notch3 (NICD3) in osteolytic tumors reduced osteolytic lesion area and enhanced osteoblastogenesis, while loss of Notch3 in osteoblastic tumors enhanced osteolytic lesion area and decreased osteoblastogensis. This was accompanied by a respective decrease and increase in the number of active osteoclasts and osteoblasts at the tumor–bone interface, without any effect on tumor proliferation. Conditioned medium from NICD3-expressing cells enhanced osteoblast differentiation and proliferation in vitro, while simultaneously inhibiting osteoclastogenesis. MMP-3 was specifically elevated and secreted by NICD3-expressing tumors, and inhibition of MMP-3 rescued the NICD3-induced osteoblastic phenotypes. Clinical osteoblastic bone metastasis samples had higher levels of Notch3 and MMP-3 compared with patient matched visceral metastases or osteolytic metastasis samples. We identified a Notch3–MMP-3 axis in human prostate cancer bone metastases that contributes to osteoblastic lesion formation by blocking osteoclast differentiation, while also contributing to osteoblastogenesis. These studies define a new role for Notch3 in manipulating the tumor microenvironment in bone metastases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31467432</pmid><doi>10.1038/s41388-019-0977-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0668-6106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2020-01, Vol.39 (1), p.204-218
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6938550
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 13
13/105
13/21
13/51
13/89
38/77
631/67/322
631/80
64
64/60
82
82/1
82/80
Animals
Apoptosis
B cells
Bone cancer
Bone lesions
Bone Neoplasms - genetics
Bone Neoplasms - pathology
Bone Neoplasms - secondary
Cell Biology
Cell differentiation
Cell Differentiation - genetics
Cell Line, Tumor
Cell proliferation
Gene Expression Regulation, Neoplastic - genetics
Heterografts
Human Genetics
Humans
Internal Medicine
Male
Matrix Metalloproteinase 3 - genetics
Medicine
Medicine & Public Health
Metastases
Metastasis
Mice
Neoplasm Metastasis
Oncology
Osteoblastogenesis
Osteoblasts
Osteoblasts - metabolism
Osteoblasts - pathology
Osteoclastogenesis
Osteoclasts
Osteoclasts - metabolism
Osteoclasts - pathology
Osteogenesis - genetics
Osteolysis
Phenotypes
Prostate cancer
Prostatic Neoplasms - genetics
Prostatic Neoplasms - pathology
Receptor, Notch3 - genetics
Signal Transduction - genetics
Tibia
Tumor cell lines
Tumor cells
Tumor microenvironment
Tumors
Xenografts
title Notch3 promotes prostate cancer-induced bone lesion development via MMP-3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notch3%20promotes%20prostate%20cancer-induced%20bone%20lesion%20development%20via%20MMP-3&rft.jtitle=Oncogene&rft.au=Ganguly,%20Sourik%20S.&rft.date=2020-01-02&rft.volume=39&rft.issue=1&rft.spage=204&rft.epage=218&rft.pages=204-218&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-019-0977-1&rft_dat=%3Cgale_pubme%3EA610147976%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331419587&rft_id=info:pmid/31467432&rft_galeid=A610147976&rfr_iscdi=true