Therapeutic targeting of RAS: New hope for drugging the “undruggable”
RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elus...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular cell research 2020-02, Vol.1867 (2), p.118570-118570, Article 118570 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118570 |
---|---|
container_issue | 2 |
container_start_page | 118570 |
container_title | Biochimica et biophysica acta. Molecular cell research |
container_volume | 1867 |
creator | Khan, Imran Rhett, J. Matthew O'Bryan, John P. |
description | RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered “undruggable”, the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
•RAS mutations occur in nearly early 30% of human tumors.•Different RAS mutations result in context-dependent effects.•Indirect inhibitors of RAS target various aspects of RAS processing.•Direct inhibitors interfere with RAS activation and effector binding.•Newer biologics target RAS activation, effector binding, and self-association. |
doi_str_mv | 10.1016/j.bbamcr.2019.118570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6937383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167488919301788</els_id><sourcerecordid>2311925579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-79bcc4f1c7e36643e376ba281789cc13872656ee4daacad559989980cef0a1253</originalsourceid><addsrcrecordid>eNp9UctKxDAUDaLoOPoHIl266dg0TZO4EER8DIiCj3VI09tOhk4zJq3izg_Rn_NLzDg-N4YLgZzHzb0HoR2cjHCC8_3pqCjUTLtRmmAxwphTlqygAeZMxCkV-SoaBBqLM87FBtr0fpqEkzG6jjZIAHiQDND4dgJOzaHvjI465WroTFtHtoquj24Ookt4jCZ2DlFlXVS6vq4XaDeB6O35pW8_XlTRwNvz6xZaq1TjYfvzHqK705Pb4_P44upsfHx0EWuaii5motA6q7BmQPI8I0BYXqiUY8aF1phwluY0B8hKpbQqKRWCh0o0VInCKSVDdLj0nffFDEoNbedUI-fOzJR7klYZ-RdpzUTW9kHmgjDCSTDY-zRw9r4H38mZ8RqaRrVgey9TgrFIKWUiULMlVTvrvYPquw1O5CIFOZXLFOQiBblMIch2f3_xW_S19p8ZICzqwYCTXhtoNZTGge5kac3_Hd4BZA2ctg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311925579</pqid></control><display><type>article</type><title>Therapeutic targeting of RAS: New hope for drugging the “undruggable”</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khan, Imran ; Rhett, J. Matthew ; O'Bryan, John P.</creator><creatorcontrib>Khan, Imran ; Rhett, J. Matthew ; O'Bryan, John P.</creatorcontrib><description>RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered “undruggable”, the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
•RAS mutations occur in nearly early 30% of human tumors.•Different RAS mutations result in context-dependent effects.•Indirect inhibitors of RAS target various aspects of RAS processing.•Direct inhibitors interfere with RAS activation and effector binding.•Newer biologics target RAS activation, effector binding, and self-association.</description><identifier>ISSN: 0167-4889</identifier><identifier>EISSN: 1879-2596</identifier><identifier>DOI: 10.1016/j.bbamcr.2019.118570</identifier><identifier>PMID: 31678118</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Allosteric Regulation ; Alternative Splicing ; Antibodies, Monoclonal - immunology ; Cancer ; Drug discovery ; GTPase ; Humans ; Monobody ; Mutation ; Neoplasms - metabolism ; Neoplasms - pathology ; Protein Processing, Post-Translational ; RAS inhibitor ; ras Proteins - antagonists & inhibitors ; ras Proteins - immunology ; ras Proteins - metabolism ; Signal transduction ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - metabolism</subject><ispartof>Biochimica et biophysica acta. Molecular cell research, 2020-02, Vol.1867 (2), p.118570-118570, Article 118570</ispartof><rights>2019</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-79bcc4f1c7e36643e376ba281789cc13872656ee4daacad559989980cef0a1253</citedby><cites>FETCH-LOGICAL-c529t-79bcc4f1c7e36643e376ba281789cc13872656ee4daacad559989980cef0a1253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbamcr.2019.118570$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31678118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Imran</creatorcontrib><creatorcontrib>Rhett, J. Matthew</creatorcontrib><creatorcontrib>O'Bryan, John P.</creatorcontrib><title>Therapeutic targeting of RAS: New hope for drugging the “undruggable”</title><title>Biochimica et biophysica acta. Molecular cell research</title><addtitle>Biochim Biophys Acta Mol Cell Res</addtitle><description>RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered “undruggable”, the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
•RAS mutations occur in nearly early 30% of human tumors.•Different RAS mutations result in context-dependent effects.•Indirect inhibitors of RAS target various aspects of RAS processing.•Direct inhibitors interfere with RAS activation and effector binding.•Newer biologics target RAS activation, effector binding, and self-association.</description><subject>Allosteric Regulation</subject><subject>Alternative Splicing</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Cancer</subject><subject>Drug discovery</subject><subject>GTPase</subject><subject>Humans</subject><subject>Monobody</subject><subject>Mutation</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Protein Processing, Post-Translational</subject><subject>RAS inhibitor</subject><subject>ras Proteins - antagonists & inhibitors</subject><subject>ras Proteins - immunology</subject><subject>ras Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - metabolism</subject><issn>0167-4889</issn><issn>1879-2596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctKxDAUDaLoOPoHIl266dg0TZO4EER8DIiCj3VI09tOhk4zJq3izg_Rn_NLzDg-N4YLgZzHzb0HoR2cjHCC8_3pqCjUTLtRmmAxwphTlqygAeZMxCkV-SoaBBqLM87FBtr0fpqEkzG6jjZIAHiQDND4dgJOzaHvjI465WroTFtHtoquj24Ookt4jCZ2DlFlXVS6vq4XaDeB6O35pW8_XlTRwNvz6xZaq1TjYfvzHqK705Pb4_P44upsfHx0EWuaii5motA6q7BmQPI8I0BYXqiUY8aF1phwluY0B8hKpbQqKRWCh0o0VInCKSVDdLj0nffFDEoNbedUI-fOzJR7klYZ-RdpzUTW9kHmgjDCSTDY-zRw9r4H38mZ8RqaRrVgey9TgrFIKWUiULMlVTvrvYPquw1O5CIFOZXLFOQiBblMIch2f3_xW_S19p8ZICzqwYCTXhtoNZTGge5kac3_Hd4BZA2ctg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Khan, Imran</creator><creator>Rhett, J. Matthew</creator><creator>O'Bryan, John P.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200201</creationdate><title>Therapeutic targeting of RAS: New hope for drugging the “undruggable”</title><author>Khan, Imran ; Rhett, J. Matthew ; O'Bryan, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-79bcc4f1c7e36643e376ba281789cc13872656ee4daacad559989980cef0a1253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allosteric Regulation</topic><topic>Alternative Splicing</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Cancer</topic><topic>Drug discovery</topic><topic>GTPase</topic><topic>Humans</topic><topic>Monobody</topic><topic>Mutation</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Protein Processing, Post-Translational</topic><topic>RAS inhibitor</topic><topic>ras Proteins - antagonists & inhibitors</topic><topic>ras Proteins - immunology</topic><topic>ras Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Imran</creatorcontrib><creatorcontrib>Rhett, J. Matthew</creatorcontrib><creatorcontrib>O'Bryan, John P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta. Molecular cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Imran</au><au>Rhett, J. Matthew</au><au>O'Bryan, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic targeting of RAS: New hope for drugging the “undruggable”</atitle><jtitle>Biochimica et biophysica acta. Molecular cell research</jtitle><addtitle>Biochim Biophys Acta Mol Cell Res</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>1867</volume><issue>2</issue><spage>118570</spage><epage>118570</epage><pages>118570-118570</pages><artnum>118570</artnum><issn>0167-4889</issn><eissn>1879-2596</eissn><abstract>RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered “undruggable”, the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
•RAS mutations occur in nearly early 30% of human tumors.•Different RAS mutations result in context-dependent effects.•Indirect inhibitors of RAS target various aspects of RAS processing.•Direct inhibitors interfere with RAS activation and effector binding.•Newer biologics target RAS activation, effector binding, and self-association.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31678118</pmid><doi>10.1016/j.bbamcr.2019.118570</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4889 |
ispartof | Biochimica et biophysica acta. Molecular cell research, 2020-02, Vol.1867 (2), p.118570-118570, Article 118570 |
issn | 0167-4889 1879-2596 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6937383 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Allosteric Regulation Alternative Splicing Antibodies, Monoclonal - immunology Cancer Drug discovery GTPase Humans Monobody Mutation Neoplasms - metabolism Neoplasms - pathology Protein Processing, Post-Translational RAS inhibitor ras Proteins - antagonists & inhibitors ras Proteins - immunology ras Proteins - metabolism Signal transduction Small Molecule Libraries - chemistry Small Molecule Libraries - metabolism |
title | Therapeutic targeting of RAS: New hope for drugging the “undruggable” |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20targeting%20of%20RAS:%20New%20hope%20for%20drugging%20the%20%E2%80%9Cundruggable%E2%80%9D&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Molecular%20cell%20research&rft.au=Khan,%20Imran&rft.date=2020-02-01&rft.volume=1867&rft.issue=2&rft.spage=118570&rft.epage=118570&rft.pages=118570-118570&rft.artnum=118570&rft.issn=0167-4889&rft.eissn=1879-2596&rft_id=info:doi/10.1016/j.bbamcr.2019.118570&rft_dat=%3Cproquest_pubme%3E2311925579%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311925579&rft_id=info:pmid/31678118&rft_els_id=S0167488919301788&rfr_iscdi=true |