A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat

Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-12, Vol.116 (52), p.27105-27114
Hauptverfasser: Orme, Anastasia, Louveau, Thomas, Stephenson, Michael J., Appelhagen, Ingo, Melton, Rachel, Cheema, Jitender, Li, Yan, Zhao, Qiang, Zhang, Lei, Fan, Danlin, Tian, Qilin, Vickerstaff, Robert J., Langdon, Tim, Han, Bin, Osbourn, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27114
container_issue 52
container_start_page 27105
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Orme, Anastasia
Louveau, Thomas
Stephenson, Michael J.
Appelhagen, Ingo
Melton, Rachel
Cheema, Jitender
Li, Yan
Zhao, Qiang
Zhang, Lei
Fan, Danlin
Tian, Qilin
Vickerstaff, Robert J.
Langdon, Tim
Han, Bin
Osbourn, Anne
description Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.
doi_str_mv 10.1073/pnas.1914652116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26897190</jstor_id><sourcerecordid>26897190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3a7cf25b4407b6494e320701bd7a0c8c0ec9df7aa4afb85df5c64763ddae04083</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotvCmRPIEhcuaccfsZMLUlVBQarEBc7WxLFbrxJ7ayeV-t_Xqy3Lhw_jw_zmad48Qt4xOGegxcUuYjlnPZOq5YypF2TDoGeNkj28JBsArptOcnlCTkvZAkDfdvCanAjWgdKt2pD5ksYULdYSLE70Ae2aJsy0rLe1Lhlj8S5jcTS7-zVkN1KfMh1CKo9xuXMlFJo8xbiEOdichlBVRuddrCM2zbu0xrHQEGnC5Q155XEq7u3zf0Z-ff3y8-pbc_Pj-vvV5U1jpRRLI1Bbz9tBStBD9SKd4KCBDaNGsJ0FZ_vRa0SJfuja0bdWSa3EOKIDCZ04I58Purt1mN1oXaxGJrPLYcb8aBIG828nhjtzmx6M6kW95F7g07NATverK4uZQ7FumjC6tBbDBedadvWGFf34H7pNa47VXqUE44zXV6mLA1VPVEp2_rgMA7OP0uyjNH-irBMf_vZw5H9nV4H3B2BblpSPfa66XrMexBN7WKdU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331212222</pqid></control><display><type>article</type><title>A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Orme, Anastasia ; Louveau, Thomas ; Stephenson, Michael J. ; Appelhagen, Ingo ; Melton, Rachel ; Cheema, Jitender ; Li, Yan ; Zhao, Qiang ; Zhang, Lei ; Fan, Danlin ; Tian, Qilin ; Vickerstaff, Robert J. ; Langdon, Tim ; Han, Bin ; Osbourn, Anne</creator><creatorcontrib>Orme, Anastasia ; Louveau, Thomas ; Stephenson, Michael J. ; Appelhagen, Ingo ; Melton, Rachel ; Cheema, Jitender ; Li, Yan ; Zhao, Qiang ; Zhang, Lei ; Fan, Danlin ; Tian, Qilin ; Vickerstaff, Robert J. ; Langdon, Tim ; Han, Bin ; Osbourn, Anne</creatorcontrib><description>Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1914652116</identifier><identifier>PMID: 31806756</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agronomy ; Antifungal activity ; Antiinfectives and antibacterials ; Arabinose ; Avena ; Biological activity ; Biological Sciences ; Biosynthesis ; Carbohydrates ; Chains ; Ecological function ; Enzymes ; Fungicides ; Glucose ; Glycosidases ; Glycosides ; Glycosyl hydrolase ; Glycosylation ; Hydrolase ; Mutation ; Natural products ; Oats ; Oligosaccharides ; Plants (botany) ; Saponins ; Sugar ; Uridine</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.27105-27114</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 26, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3a7cf25b4407b6494e320701bd7a0c8c0ec9df7aa4afb85df5c64763ddae04083</citedby><cites>FETCH-LOGICAL-c443t-3a7cf25b4407b6494e320701bd7a0c8c0ec9df7aa4afb85df5c64763ddae04083</cites><orcidid>0000-0003-3576-5241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26897190$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26897190$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31806756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orme, Anastasia</creatorcontrib><creatorcontrib>Louveau, Thomas</creatorcontrib><creatorcontrib>Stephenson, Michael J.</creatorcontrib><creatorcontrib>Appelhagen, Ingo</creatorcontrib><creatorcontrib>Melton, Rachel</creatorcontrib><creatorcontrib>Cheema, Jitender</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Fan, Danlin</creatorcontrib><creatorcontrib>Tian, Qilin</creatorcontrib><creatorcontrib>Vickerstaff, Robert J.</creatorcontrib><creatorcontrib>Langdon, Tim</creatorcontrib><creatorcontrib>Han, Bin</creatorcontrib><creatorcontrib>Osbourn, Anne</creatorcontrib><title>A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.</description><subject>Agronomy</subject><subject>Antifungal activity</subject><subject>Antiinfectives and antibacterials</subject><subject>Arabinose</subject><subject>Avena</subject><subject>Biological activity</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Chains</subject><subject>Ecological function</subject><subject>Enzymes</subject><subject>Fungicides</subject><subject>Glucose</subject><subject>Glycosidases</subject><subject>Glycosides</subject><subject>Glycosyl hydrolase</subject><subject>Glycosylation</subject><subject>Hydrolase</subject><subject>Mutation</subject><subject>Natural products</subject><subject>Oats</subject><subject>Oligosaccharides</subject><subject>Plants (botany)</subject><subject>Saponins</subject><subject>Sugar</subject><subject>Uridine</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EotvCmRPIEhcuaccfsZMLUlVBQarEBc7WxLFbrxJ7ayeV-t_Xqy3Lhw_jw_zmad48Qt4xOGegxcUuYjlnPZOq5YypF2TDoGeNkj28JBsArptOcnlCTkvZAkDfdvCanAjWgdKt2pD5ksYULdYSLE70Ae2aJsy0rLe1Lhlj8S5jcTS7-zVkN1KfMh1CKo9xuXMlFJo8xbiEOdichlBVRuddrCM2zbu0xrHQEGnC5Q155XEq7u3zf0Z-ff3y8-pbc_Pj-vvV5U1jpRRLI1Bbz9tBStBD9SKd4KCBDaNGsJ0FZ_vRa0SJfuja0bdWSa3EOKIDCZ04I58Purt1mN1oXaxGJrPLYcb8aBIG828nhjtzmx6M6kW95F7g07NATverK4uZQ7FumjC6tBbDBedadvWGFf34H7pNa47VXqUE44zXV6mLA1VPVEp2_rgMA7OP0uyjNH-irBMf_vZw5H9nV4H3B2BblpSPfa66XrMexBN7WKdU</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Orme, Anastasia</creator><creator>Louveau, Thomas</creator><creator>Stephenson, Michael J.</creator><creator>Appelhagen, Ingo</creator><creator>Melton, Rachel</creator><creator>Cheema, Jitender</creator><creator>Li, Yan</creator><creator>Zhao, Qiang</creator><creator>Zhang, Lei</creator><creator>Fan, Danlin</creator><creator>Tian, Qilin</creator><creator>Vickerstaff, Robert J.</creator><creator>Langdon, Tim</creator><creator>Han, Bin</creator><creator>Osbourn, Anne</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3576-5241</orcidid></search><sort><creationdate>20191226</creationdate><title>A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat</title><author>Orme, Anastasia ; Louveau, Thomas ; Stephenson, Michael J. ; Appelhagen, Ingo ; Melton, Rachel ; Cheema, Jitender ; Li, Yan ; Zhao, Qiang ; Zhang, Lei ; Fan, Danlin ; Tian, Qilin ; Vickerstaff, Robert J. ; Langdon, Tim ; Han, Bin ; Osbourn, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3a7cf25b4407b6494e320701bd7a0c8c0ec9df7aa4afb85df5c64763ddae04083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agronomy</topic><topic>Antifungal activity</topic><topic>Antiinfectives and antibacterials</topic><topic>Arabinose</topic><topic>Avena</topic><topic>Biological activity</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Chains</topic><topic>Ecological function</topic><topic>Enzymes</topic><topic>Fungicides</topic><topic>Glucose</topic><topic>Glycosidases</topic><topic>Glycosides</topic><topic>Glycosyl hydrolase</topic><topic>Glycosylation</topic><topic>Hydrolase</topic><topic>Mutation</topic><topic>Natural products</topic><topic>Oats</topic><topic>Oligosaccharides</topic><topic>Plants (botany)</topic><topic>Saponins</topic><topic>Sugar</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orme, Anastasia</creatorcontrib><creatorcontrib>Louveau, Thomas</creatorcontrib><creatorcontrib>Stephenson, Michael J.</creatorcontrib><creatorcontrib>Appelhagen, Ingo</creatorcontrib><creatorcontrib>Melton, Rachel</creatorcontrib><creatorcontrib>Cheema, Jitender</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Fan, Danlin</creatorcontrib><creatorcontrib>Tian, Qilin</creatorcontrib><creatorcontrib>Vickerstaff, Robert J.</creatorcontrib><creatorcontrib>Langdon, Tim</creatorcontrib><creatorcontrib>Han, Bin</creatorcontrib><creatorcontrib>Osbourn, Anne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orme, Anastasia</au><au>Louveau, Thomas</au><au>Stephenson, Michael J.</au><au>Appelhagen, Ingo</au><au>Melton, Rachel</au><au>Cheema, Jitender</au><au>Li, Yan</au><au>Zhao, Qiang</au><au>Zhang, Lei</au><au>Fan, Danlin</au><au>Tian, Qilin</au><au>Vickerstaff, Robert J.</au><au>Langdon, Tim</au><au>Han, Bin</au><au>Osbourn, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>116</volume><issue>52</issue><spage>27105</spage><epage>27114</epage><pages>27105-27114</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31806756</pmid><doi>10.1073/pnas.1914652116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3576-5241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.27105-27114
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936528
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Agronomy
Antifungal activity
Antiinfectives and antibacterials
Arabinose
Avena
Biological activity
Biological Sciences
Biosynthesis
Carbohydrates
Chains
Ecological function
Enzymes
Fungicides
Glucose
Glycosidases
Glycosides
Glycosyl hydrolase
Glycosylation
Hydrolase
Mutation
Natural products
Oats
Oligosaccharides
Plants (botany)
Saponins
Sugar
Uridine
title A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20noncanonical%20vacuolar%20sugar%20transferase%20required%20for%20biosynthesis%20of%20antimicrobial%20defense%20compounds%20in%20oat&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Orme,%20Anastasia&rft.date=2019-12-26&rft.volume=116&rft.issue=52&rft.spage=27105&rft.epage=27114&rft.pages=27105-27114&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1914652116&rft_dat=%3Cjstor_pubme%3E26897190%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331212222&rft_id=info:pmid/31806756&rft_jstor_id=26897190&rfr_iscdi=true