A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat
Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-12, Vol.116 (52), p.27105-27114 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27114 |
---|---|
container_issue | 52 |
container_start_page | 27105 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Orme, Anastasia Louveau, Thomas Stephenson, Michael J. Appelhagen, Ingo Melton, Rachel Cheema, Jitender Li, Yan Zhao, Qiang Zhang, Lei Fan, Danlin Tian, Qilin Vickerstaff, Robert J. Langdon, Tim Han, Bin Osbourn, Anne |
description | Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants. |
doi_str_mv | 10.1073/pnas.1914652116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26897190</jstor_id><sourcerecordid>26897190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3a7cf25b4407b6494e320701bd7a0c8c0ec9df7aa4afb85df5c64763ddae04083</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotvCmRPIEhcuaccfsZMLUlVBQarEBc7WxLFbrxJ7ayeV-t_Xqy3Lhw_jw_zmad48Qt4xOGegxcUuYjlnPZOq5YypF2TDoGeNkj28JBsArptOcnlCTkvZAkDfdvCanAjWgdKt2pD5ksYULdYSLE70Ae2aJsy0rLe1Lhlj8S5jcTS7-zVkN1KfMh1CKo9xuXMlFJo8xbiEOdichlBVRuddrCM2zbu0xrHQEGnC5Q155XEq7u3zf0Z-ff3y8-pbc_Pj-vvV5U1jpRRLI1Bbz9tBStBD9SKd4KCBDaNGsJ0FZ_vRa0SJfuja0bdWSa3EOKIDCZ04I58Purt1mN1oXaxGJrPLYcb8aBIG828nhjtzmx6M6kW95F7g07NATverK4uZQ7FumjC6tBbDBedadvWGFf34H7pNa47VXqUE44zXV6mLA1VPVEp2_rgMA7OP0uyjNH-irBMf_vZw5H9nV4H3B2BblpSPfa66XrMexBN7WKdU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331212222</pqid></control><display><type>article</type><title>A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Orme, Anastasia ; Louveau, Thomas ; Stephenson, Michael J. ; Appelhagen, Ingo ; Melton, Rachel ; Cheema, Jitender ; Li, Yan ; Zhao, Qiang ; Zhang, Lei ; Fan, Danlin ; Tian, Qilin ; Vickerstaff, Robert J. ; Langdon, Tim ; Han, Bin ; Osbourn, Anne</creator><creatorcontrib>Orme, Anastasia ; Louveau, Thomas ; Stephenson, Michael J. ; Appelhagen, Ingo ; Melton, Rachel ; Cheema, Jitender ; Li, Yan ; Zhao, Qiang ; Zhang, Lei ; Fan, Danlin ; Tian, Qilin ; Vickerstaff, Robert J. ; Langdon, Tim ; Han, Bin ; Osbourn, Anne</creatorcontrib><description>Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1914652116</identifier><identifier>PMID: 31806756</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agronomy ; Antifungal activity ; Antiinfectives and antibacterials ; Arabinose ; Avena ; Biological activity ; Biological Sciences ; Biosynthesis ; Carbohydrates ; Chains ; Ecological function ; Enzymes ; Fungicides ; Glucose ; Glycosidases ; Glycosides ; Glycosyl hydrolase ; Glycosylation ; Hydrolase ; Mutation ; Natural products ; Oats ; Oligosaccharides ; Plants (botany) ; Saponins ; Sugar ; Uridine</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.27105-27114</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 26, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3a7cf25b4407b6494e320701bd7a0c8c0ec9df7aa4afb85df5c64763ddae04083</citedby><cites>FETCH-LOGICAL-c443t-3a7cf25b4407b6494e320701bd7a0c8c0ec9df7aa4afb85df5c64763ddae04083</cites><orcidid>0000-0003-3576-5241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26897190$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26897190$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31806756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orme, Anastasia</creatorcontrib><creatorcontrib>Louveau, Thomas</creatorcontrib><creatorcontrib>Stephenson, Michael J.</creatorcontrib><creatorcontrib>Appelhagen, Ingo</creatorcontrib><creatorcontrib>Melton, Rachel</creatorcontrib><creatorcontrib>Cheema, Jitender</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Fan, Danlin</creatorcontrib><creatorcontrib>Tian, Qilin</creatorcontrib><creatorcontrib>Vickerstaff, Robert J.</creatorcontrib><creatorcontrib>Langdon, Tim</creatorcontrib><creatorcontrib>Han, Bin</creatorcontrib><creatorcontrib>Osbourn, Anne</creatorcontrib><title>A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.</description><subject>Agronomy</subject><subject>Antifungal activity</subject><subject>Antiinfectives and antibacterials</subject><subject>Arabinose</subject><subject>Avena</subject><subject>Biological activity</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Chains</subject><subject>Ecological function</subject><subject>Enzymes</subject><subject>Fungicides</subject><subject>Glucose</subject><subject>Glycosidases</subject><subject>Glycosides</subject><subject>Glycosyl hydrolase</subject><subject>Glycosylation</subject><subject>Hydrolase</subject><subject>Mutation</subject><subject>Natural products</subject><subject>Oats</subject><subject>Oligosaccharides</subject><subject>Plants (botany)</subject><subject>Saponins</subject><subject>Sugar</subject><subject>Uridine</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EotvCmRPIEhcuaccfsZMLUlVBQarEBc7WxLFbrxJ7ayeV-t_Xqy3Lhw_jw_zmad48Qt4xOGegxcUuYjlnPZOq5YypF2TDoGeNkj28JBsArptOcnlCTkvZAkDfdvCanAjWgdKt2pD5ksYULdYSLE70Ae2aJsy0rLe1Lhlj8S5jcTS7-zVkN1KfMh1CKo9xuXMlFJo8xbiEOdichlBVRuddrCM2zbu0xrHQEGnC5Q155XEq7u3zf0Z-ff3y8-pbc_Pj-vvV5U1jpRRLI1Bbz9tBStBD9SKd4KCBDaNGsJ0FZ_vRa0SJfuja0bdWSa3EOKIDCZ04I58Purt1mN1oXaxGJrPLYcb8aBIG828nhjtzmx6M6kW95F7g07NATverK4uZQ7FumjC6tBbDBedadvWGFf34H7pNa47VXqUE44zXV6mLA1VPVEp2_rgMA7OP0uyjNH-irBMf_vZw5H9nV4H3B2BblpSPfa66XrMexBN7WKdU</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Orme, Anastasia</creator><creator>Louveau, Thomas</creator><creator>Stephenson, Michael J.</creator><creator>Appelhagen, Ingo</creator><creator>Melton, Rachel</creator><creator>Cheema, Jitender</creator><creator>Li, Yan</creator><creator>Zhao, Qiang</creator><creator>Zhang, Lei</creator><creator>Fan, Danlin</creator><creator>Tian, Qilin</creator><creator>Vickerstaff, Robert J.</creator><creator>Langdon, Tim</creator><creator>Han, Bin</creator><creator>Osbourn, Anne</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3576-5241</orcidid></search><sort><creationdate>20191226</creationdate><title>A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat</title><author>Orme, Anastasia ; Louveau, Thomas ; Stephenson, Michael J. ; Appelhagen, Ingo ; Melton, Rachel ; Cheema, Jitender ; Li, Yan ; Zhao, Qiang ; Zhang, Lei ; Fan, Danlin ; Tian, Qilin ; Vickerstaff, Robert J. ; Langdon, Tim ; Han, Bin ; Osbourn, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3a7cf25b4407b6494e320701bd7a0c8c0ec9df7aa4afb85df5c64763ddae04083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agronomy</topic><topic>Antifungal activity</topic><topic>Antiinfectives and antibacterials</topic><topic>Arabinose</topic><topic>Avena</topic><topic>Biological activity</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Chains</topic><topic>Ecological function</topic><topic>Enzymes</topic><topic>Fungicides</topic><topic>Glucose</topic><topic>Glycosidases</topic><topic>Glycosides</topic><topic>Glycosyl hydrolase</topic><topic>Glycosylation</topic><topic>Hydrolase</topic><topic>Mutation</topic><topic>Natural products</topic><topic>Oats</topic><topic>Oligosaccharides</topic><topic>Plants (botany)</topic><topic>Saponins</topic><topic>Sugar</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orme, Anastasia</creatorcontrib><creatorcontrib>Louveau, Thomas</creatorcontrib><creatorcontrib>Stephenson, Michael J.</creatorcontrib><creatorcontrib>Appelhagen, Ingo</creatorcontrib><creatorcontrib>Melton, Rachel</creatorcontrib><creatorcontrib>Cheema, Jitender</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Fan, Danlin</creatorcontrib><creatorcontrib>Tian, Qilin</creatorcontrib><creatorcontrib>Vickerstaff, Robert J.</creatorcontrib><creatorcontrib>Langdon, Tim</creatorcontrib><creatorcontrib>Han, Bin</creatorcontrib><creatorcontrib>Osbourn, Anne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orme, Anastasia</au><au>Louveau, Thomas</au><au>Stephenson, Michael J.</au><au>Appelhagen, Ingo</au><au>Melton, Rachel</au><au>Cheema, Jitender</au><au>Li, Yan</au><au>Zhao, Qiang</au><au>Zhang, Lei</au><au>Fan, Danlin</au><au>Tian, Qilin</au><au>Vickerstaff, Robert J.</au><au>Langdon, Tim</au><au>Han, Bin</au><au>Osbourn, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>116</volume><issue>52</issue><spage>27105</spage><epage>27114</epage><pages>27105-27114</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31806756</pmid><doi>10.1073/pnas.1914652116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3576-5241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.27105-27114 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936528 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agronomy Antifungal activity Antiinfectives and antibacterials Arabinose Avena Biological activity Biological Sciences Biosynthesis Carbohydrates Chains Ecological function Enzymes Fungicides Glucose Glycosidases Glycosides Glycosyl hydrolase Glycosylation Hydrolase Mutation Natural products Oats Oligosaccharides Plants (botany) Saponins Sugar Uridine |
title | A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20noncanonical%20vacuolar%20sugar%20transferase%20required%20for%20biosynthesis%20of%20antimicrobial%20defense%20compounds%20in%20oat&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Orme,%20Anastasia&rft.date=2019-12-26&rft.volume=116&rft.issue=52&rft.spage=27105&rft.epage=27114&rft.pages=27105-27114&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1914652116&rft_dat=%3Cjstor_pubme%3E26897190%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331212222&rft_id=info:pmid/31806756&rft_jstor_id=26897190&rfr_iscdi=true |